cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316296 a(n) = Sum_{k=1..n} f(k, n), where f(i, j) is the number of multiples of i greater than j and less than 2*j.

Original entry on oeis.org

0, 1, 3, 5, 9, 10, 15, 18, 21, 24, 31, 30, 38, 41, 44, 48, 55, 56, 64, 65, 70, 75, 84, 81, 90, 95, 98, 103, 112, 109, 120, 123, 129, 134, 139, 139, 150, 155, 160, 161, 173, 170, 183, 184, 187, 198, 205, 202, 212, 217, 223, 226, 239, 236, 245, 248, 255, 262, 271, 266, 282, 285, 288
Offset: 1

Views

Author

Andrea La Rosa, Jun 29 2018

Keywords

Comments

f(n, m) is the number of multiples of n that are > m and < 2*m. n and m must be both >= 0.
By definition, this means that f(n, m) =
0 if n >= 2m;
1 if m < n < 2m;
If n <= m, then m = kn + q, where 0 <= q < n.
It can be proven that in this case f(n, m) =
k - 1 if q = 0;
k if q > 0 and (n - q) >= q;
k + 1 if q > 0 and (n - q) < q.
Let sd(n) = A006218; then a(n) = sd(2n-1) - sd(n) - (n - 1).
Also, a(n) = Sum_{k=n+1..2n-1} (d(k) - 1), where d(k) is number of divisors (A000005).
Number of ways the numbers from 1..n divide the numbers from n+1..2n-1, n>=2. - Wesley Ivan Hurt, Feb 08 2022

Examples

			For n = 7, a(7) = f(1,7) + f(2,7) + f(3,7) + f(4,7) + f(5,7) + f(6,7) + f(7,7) = 6 + 3 + 2 + 2 + 1 + 1 = 15.
		

Programs

  • JavaScript
    function f(n,m){
        var count = 0;
        for(var i=m+1; i<2*m; i++){
            if(i%n === 0) count++;
        }
        return count;
    }
    function sf(n){
        var sum = 0;
        for(var i=1; i<=n; i++){
            sum += f(i, n);
        }
        return sum;
    }
    
  • PARI
    a(n) = n + sum(m = 1, n, (floor((n<<1 - 1) / m) - ceil((n + 1) / m))) \\ David A. Corneth, Jun 29 2018
    
  • Python
    from math import isqrt
    def A316296(n): return ((s:=isqrt(n))+(t:=isqrt(m:=(n<<1)-1)))*(s-t)+(sum(m//k for k in range(1,t+1))-sum(n//k for k in range(1,s+1))<<1)-n+1 # Chai Wah Wu, Oct 24 2023

Formula

a(n) = Sum_{k=1..n} Sum_{i=n+1..2n-1} (1-ceiling(i/k)+floor(i/k)). - Wesley Ivan Hurt, Feb 08 2022