A316359 a(n) is the number of solutions to the Diophantine equation i^3 + j^3 + k^3 = n^3, where 0 < i <= j <= k.
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 2, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 3, 0, 1, 1, 2, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 3, 0, 0, 2, 2, 0, 1, 0, 1, 2, 3, 0, 3, 1, 0, 4
Offset: 1
Keywords
Examples
a(18)=2, because 18^3 = 9^3 + 12^3 + 15^3 = 2^3 + 12^3 + 16^3.
Links
- Arlu Genesis A. Padilla, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A046080.
Programs
-
Mathematica
Array[Count[PowersRepresentations[#^3, 3, 3], ?(FreeQ[Differences@ #, 0] &)] &, 105] (* _Michael De Vlieger, Jun 30 2018 *)
-
PARI
a(n) = sum(i=1, n, sum(j=1, i, sum(k=1, j, i^3 + j^3 + k^3 == n^3))); \\ Michel Marcus, Jul 02 2018
-
PARI
a(n)={sum(i=1, n, sum(j=1, i, my(k); ispower(n^3-j^3-i^3, 3, &k) && k>=1 && k<=j ))} \\ Andrew Howroyd, Jul 07 2018
-
Python
from sympy.solvers.diophantine.diophantine import power_representation def A316359(n): return len(list(power_representation(n**3,3,3))) # Chai Wah Wu, Nov 19 2024
Comments