A316700
E.g.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n/n! * Product_{k=1..n} (n+1-k) + k/A(x).
Original entry on oeis.org
1, 2, 5, 19, 87, 481, 3058, 22317, 183501, 1695937, 17383266, 196331895, 2413283755, 32071547509, 457005861978, 6958913121081, 112742453743929, 1940037369861185, 35336786759749378, 679714283742254627, 13755601059097927791, 292116789342048656525, 6489891770655364327818, 150589804371710317610221, 3642747130658567662759333, 91770842180615381158770081
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 5*x^2/2! + 19*x^3/3! + 87*x^4/4! + 481*x^5/5! + 3058*x^6/6! + 22317*x^7/7! + 183501*x^8/8! + 1695937*x^9/9! + ...
such that A = A(x) satisfies
A(x) = 1 + (1 + 1/A)*x + (2 + 1/A)*(1 + 2/A)*x^2/2! + (3 + 1/A)*(2 + 2/A)*(1 + 3/A)*x^3/3! + (4 + 1/A)*(3 + 2/A)*(2 + 3/A)*(1 + 4/A)*x^4/4! + (5 + 1/A)*(4 + 2/A)*(3 + 3/A)*(2 + 4/A)*(1 + 5/A)*x^5/5! + ...
Also,
A(x)^2/(1 + x*A(x)) = 1 + (1 + 2/A)*x + (2 + 2/A)*(1 + 3/A)*x^2/2! + (3 + 2/A)*(2 + 3/A)*(1 + 4/A)*x^3/3! + (4 + 2/A)*(3 + 3/A)*(2 + 4/A)*(1 + 5/A)*x^4/4! + (5 + 2/A)*(4 + 3/A)*(3 + 4/A)*(2 + 5/A)*(1 + 6/A)*x^5/5! + ...
And,
A(x)^3/((1 + x*A(x))*(1 + x)) = 1 + (2 + 2/A)*x + (3 + 2/A)*(2 + 3/A)*x^2/2! + (4 + 2/A)*(3 + 3/A)*(2 + 4/A)*x^3/3! + (5 + 2/A)*(4 + 3/A)*(3 + 4/A)*(2 + 5/A)*x^4/4! + (6 + 2/A)*(5 + 3/A)*(4 + 4/A)*(3 + 5/A)*(2 + 6/A)*x^5/5! + ...
RELATED SERIES.
A(x)/(1+x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 47*x^4/4! + 246*x^5/5! + 1582*x^6/6! + 11243*x^7/7! + 93557*x^8/8! + 853924*x^9/9! + ...
A(x)/(1 + x*A(x)) = 1 + x - x^2/2! - 5*x^3/3! - 5*x^4/4! + 41*x^5/5! + 256*x^6/6! + 533*x^7/7! - 4451*x^8/8! - 57479*x^9/9! + ...
where ( A(x)/(1 + x*A(x)) )^A(x) = A(x)/(1 + x).
Let G(x) = A(x*G(x)) and A(x) = G(x/A(x)), where G(x) begins
G(x) = 1 + 2*x + 13*x^2/2! + 157*x^3/3! + 2819*x^4/4! + 67621*x^5/5! + 2036230*x^6/6! + 73907639*x^7/7! + 3142556933*x^8/8! + ... + A316701(n)*x^n/n! + ...
then G(x)/(1 + x*G(x)) = ( G(x)/(1 + x*G(x)^2) )^G(x)
and G(x) = (1/x)*Series_Reversion( x/A(x) ).
-
nmax = 25; aa = ConstantArray[0, nmax]; aa[[1]] = 2; Do[y = 1 + 2*x + Sum[aa[[k]]*x^k, {k, 2, j - 1}] + koef*x^j; sol = Solve[SeriesCoefficient[(1 + x)*(y/(1 + x*y))^y - y, {x, 0, j + 1}] == 0, koef][[1]]; aa[[j]] = koef /. sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 16 2020 *)
-
/* From Biexponential Series: */
{a(n) = my(A=1); for(i=1,n, A = sum(m=0, n, x^m/m! * prod(k=1, m, m+1-k + k/A +x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
A316701
E.g.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n/n! * Product_{k=1..n} (n+1-k) + k*A(x).
Original entry on oeis.org
1, 2, 13, 157, 2819, 67621, 2036230, 73907639, 3142556933, 153268340377, 8436526507286, 517427997295353, 34994424316034815, 2587503674068863681, 207665084850599068022, 17979537469340405579571, 1670426465731302891946025, 165771247503060676475253809, 17501167047878021578046031334, 1958599892703021903310163005669
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 13*x^2/2! + 157*x^3/3! + 2819*x^4/4! + 67621*x^5/5! + 2036230*x^6/6! + 73907639*x^7/7! + 3142556933*x^8/8! + 153268340377*x^9/9! + ...
such that A = A(x) satisfies
A(x) = 1 + (1 + A)*x + (2 + A)*(1 + 2*A)*x^2/2! + (3 + A)*(2 + 2*A)*(1 + 3*A)*x^3/3! + (4 + A)*(3 + 2*A)*(2 + 3*A)*(1 + 4*A)*x^4/4! + (5 + A)*(4 + 2*A)*(3 + 3*A)*(2 + 4*A)*(1 + 5*A)*x^5/5! + ...
Also,
A(x)^2/(1 + x*A(x)) = 1 + (1 + 2*A)*x + (2 + 2*A)*(1 + 3*A)*x^2/2! + (3 + 2*A)*(2 + 3*A)*(1 + 4*A)*x^3/3! + (4 + 2*A)*(3 + 3*A)*(2 + 4*A)*(1 + 5*A)*x^4/4! + (5 + 2*A)*(4 + 3*A)*(3 + 4*A)*(2 + 5*A)*(1 + 6*A)*x^5/5! + ...
And,
A(x)^3/((1 + x*A(x))*(1 + x*A(x)^2)) = 1 + (2 + 2*A)*x + (3 + 2*A)*(2 + 3*A)*x^2/2! + (4 + 2*A)*(3 + 3*A)*(2 + 4*A)*x^3/3! + (5 + 2*A)*(4 + 3*A)*(3 + 4*A)*(2 + 5*A)*x^4/4! + (6 + 2*A)*(5 + 3*A)*(4 + 4*A)*(3 + 5*A)*(2 + 6*A)*x^5/5! + ...
RELATED SERIES.
A(x)/(1 + x*A(x)) = 1 + x + 7*x^2/2! + 85*x^3/3! + 1527*x^4/4! + 36621*x^5/5! + 1102348*x^6/6! + 39996727*x^7/7! + 1700108469*x^8/8! + ...
A(x)/(1 + x*A(x)^2) = 1 + x + 3*x^2/3! + 22*x^3/3! + 299*x^4/4! + 6086*x^5/5! + 164782*x^6/6! + 5553185*x^7/7! + 223540669*x^8/8! + ...
where ( A(x)/(1 + x*A(x)^2) )^A(x) = A(x)/(1 + x*A(x)).
Let G(x) = A(x/G(x)) and A(x) = G(x*A(x)), where G(x) begins
G(x) = 1 + 2*x + 5*x^2/2! + 19*x^3/3! + 87*x^4/4! + 481*x^5/5! + 3058*x^6/6! + 22317*x^7/7! + 183501*x^8/8! + ... + A316700(n)*x^n/n! + ...
then G(x)/(1 + x) = ( G(x)/(1 + x*G(x)) )^G(x)
and G(x) = x/Series_Reversion( x*A(x) ).
-
nmax = 25; aa = ConstantArray[0, nmax]; aa[[1]] = 2; Do[y = 1 + 2*x + Sum[aa[[k]]*x^k, {k, 2, j - 1}] + koef*x^j; sol = Solve[SeriesCoefficient[(1 + x*y)*(y/(1 + x*y^2))^y - y, {x, 0, j + 1}] == 0, koef][[1]]; aa[[j]] = koef /. sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 16 2020 *)
-
/* From Biexponential Series: */
{a(n) = my(A=1); for(i=1,n, A = sum(m=0, n, x^m/m! * prod(k=1, m, m+1-k + k*A +x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
A316702
E.g.f.: Sum_{n>=0} x^n/n! * Product_{k=1..n} (n+1-k) + k*x^2.
Original entry on oeis.org
1, 1, 2, 12, 84, 640, 6060, 70728, 941808, 13950144, 230971680, 4242680640, 85192002720, 1854377366400, 43570277097984, 1099505252240640, 29642211339068160, 850166713775554560, 25852506567901839360, 830856828456304128000, 28137892587325700198400, 1001532282143426144133120, 37379628178079964459217920, 1459734364264707546159513600
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 84*x^4/4! + 640*x^5/5! + 6060*x^6/6! + 70728*x^7/7! + 941808*x^8/8! + 13950144*x^9/9! + 230971680*x^10/10! + ...
such that
A(x) = 1 + (1 + x^2)*x + (2 + x^2)*(1 + 2*x^2)*x^2/2! + (3 + x^2)*(2 + 2*x^2)*(1 + 3*x^2)*x^3/3! + (4 + x^2)*(3 + 2*x^2)*(2 + 3*x^2)*(1 + 4*x^2)*x^4/4! + (5 + x^2)*(4 + 2*x^2)*(3 + 3*x^2)*(2 + 4*x^2)*(1 + 5*x^2)*x^5/5! + ...
Also,
A(x)^2/(1 + x*A(x)) = 1 + (1 + 2*x^2)*x + (2 + 2*x^2)*(1 + 3*x^2)*x^2/2! + (3 + 2*x^2)*(2 + 3*x^2)*(1 + 4*x^2)*x^3/3! + (4 + 2*x^2)*(3 + 3*x^2)*(2 + 4*x^2)*(1 + 5*x^2)*x^4/4! + (5 + 2*x^2)*(4 + 3*x^2)*(3 + 4*x^2)*(2 + 5*x^2)*(1 + 6*x^2)*x^5/5! + ...
And,
A(x)^3/((1 + x*A(x))*(1 + x^3*A(x))) = 1 + (2 + 2*x^2)*x + (3 + 2*x^2)*(2 + 3*x^2)*x^2/2! + (4 + 2*x^2)*(3 + 3*x^2)*(2 + 4*x^2)*x^3/3! + (5 + 2*x^2)*(4 + 3*x^2)*(3 + 4*x^2)*(2 + 5*x^2)*x^4/4! + (6 + 2*x^2)*(5 + 3*x^2)*(4 + 4*x^2)*(3 + 5*x^2)*(2 + 6*x^2)*x^5/5! + ...
RELATED SERIES.
A(x)/(1 + x*A(x)) = 1 + 6*x^3/3! + 12*x^4/4! + 40*x^5/5! + 900*x^6/6! + 7728*x^7/7! + 68880*x^8/8! + 1031616*x^9/9! + ...
A(x)/(1 + x^3*A(x)) = 1 + x + 2*x^2/2! + 6*x^3/3! + 36*x^4/4! + 280*x^5/5! + 2460*x^6/6! + 25368*x^7/7! + 310128*x^8/8! + 4333824*x^9/9! + ...
where ( A(x)/(1 + x^3*A(x)) )^(x^2) = A(x)/(1 + x*A(x)).
-
nmax = 20; CoefficientList[Series[Sum[(x^k*(x^2 - 1)^k * Pochhammer[(k + x^2)/(x^2 - 1), k])/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 15 2018 *)
-
{a(n) = my(A=1); A = sum(m=0,n, x^m/m! * prod(k=1,m, m+1-k + k*x^2 +x*O(x^n))); n!*polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
A316704
E.g.f.: Sum_{n>=0} (2*x)^n/n! * Product_{k=1..n} (n+1-k) + k*x.
Original entry on oeis.org
1, 2, 12, 108, 1312, 20320, 381408, 8420160, 213813248, 6139270656, 196691281920, 6956268042240, 269187901974528, 11313963679948800, 513251989767487488, 24995547184468008960, 1300702468667721646080, 72026879559935471124480, 4229000873160355032072192, 262425376836886982897958912, 17161024720479004010930503680, 1179556709319250468710226329600
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 108*x^3/3! + 1312*x^4/4! + 20320*x^5/5! + 381408*x^6/6! + 8420160*x^7/7! + 213813248*x^8/8! + 6139270656*x^9/9! + 196691281920*x^10/10! + ...
such that
A(x) = 1 + (1+x)*(2*x) + (2 + x)*(1 + 2*x)*(2*x)^2/2! + (3 + x)*(2 + 2*x)*(1 + 3*x)*(2*x)^3/3! + (4 + x)*(3 + 2*x)*(2 + 3*x)*(1 + 4*x)*(2*x)^4/4! + (5 + x)*(4 + 2*x)*(3 + 3*x)*(2 + 4*x)*(1 + 5*x)*(2*x)^5/5! + ...
Also,
A(x)^2/(1 + 2*x*A(x)) = 1 + (1 + 2*x)*(2*x) + (2 + 2*x)*(1 + 3*x)*(2*x)^2/2! + (3 + 2*x)*(2 + 3*x)*(1 + 4*x)*(2*x)^3/3! + (4 + 2*x)*(3 + 3*x)*(2 + 4*x)*(1 + 5*x)*(2*x)^4/4! + (5 + 2*x)*(4 + 3*x)*(3 + 4*x)*(2 + 5*x)*(1 + 6*x)*(2*x)^5/5! + ...
And,
A(x)^3/((1 + 2*x*A(x))*(1 + 2*x^2*A(x))) = 1 + (2 + 2*x)*(2*x) + (3 + 2*x)*(2 + 3*x)*(2*x)^2/2! + (4 + 2*x)*(3 + 3*x)*(2 + 4*x)*(2*x)^3/3! + (5 + 2*x)*(4 + 3*x)*(3 + 4*x)*(2 + 5*x)*(2*x)^4/4! + (6 + 2*x)*(5 + 3*x)*(4 + 4*x)*(3 + 5*x)*(2 + 6*x)*(2*x)^5/5! + ...
RELATED SERIES.
B(x) = sqrt( (1 + 2*x*A(x)) * (1 + 2*x^2*A(x)) ) = 1 + x + 5*x^2/2! + 45*x^3/3! + 513*x^4/4! + 7745*x^5/5! + 142485*x^6/6! + 3095421*x^7/7! + 77642145*x^8/8! + 2207145825*x^9/9! + ... + A316705(n)*x^n/n! + ...
where
B(x) = 1 + (1 + x)*x + (3 + x)*(1 + 3*x)*x^2/2! + (5 + x)*(3 + 3*x)*(1 + 5*x)*x^3/3! + (7 + x)*(5 + 3*x)*(3 + 5*x)*(1 + 7*x)*x^4/4! + (9 + x)*(7 + 3*x)*(5 + 5*x)*(3 + 7*x)*(1 + 9*x)*x^5/5! + ...
-
/* Using the biexponential series */
{a(n) = my(A); A = sum(m=0,n, (2*x)^m/m! * prod(k=1,m, m+1-k + k*x +x*O(x^n))); n!*polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
-
/* Using Functional Equation: */
{a(n) = my(A=1); for(i=1,n, A = ( (1 + 2*x*A)/(1 + 2*x^2*A +x*O(x^n))^x )^(1/(1-x)) ); n!*polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
A316705
E.g.f.: Sum_{n>=0} x^n/n! * Product_{k=1..n} (2*n+1-2*k) + (2*k-1)*x.
Original entry on oeis.org
1, 1, 5, 45, 513, 7745, 142485, 3095421, 77642145, 2207145825, 70130493765, 2463100122285, 94752421655265, 3962161404127329, 178943401595685909, 8680576995359894205, 450150904632193002945, 24850264116962803786305, 1455015398837011003805445, 90062955077484708745769133, 5876178416626462668682616385, 403059737428052979318873127425
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 45*x^3/3! + 513*x^4/4! + 7745*x^5/5! + 142485*x^6/6! + 3095421*x^7/7! + 77642145*x^8/8! + 2207145825*x^9/9! + 70130493765*x^10/10! + ...
such that
A(x) = 1 + (1 + x)*x + (3 + x)*(1 + 3*x)*x^2/2! + (5 + x)*(3 + 3*x)*(1 + 5*x)*x^3/3! + (7 + x)*(5 + 3*x)*(3 + 5*x)*(1 + 7*x)*x^4/4! + (9 + x)*(7 + 3*x)*(5 + 5*x)*(3 + 7*x)*(1 + 9*x)*x^5/5! + ...
Also,
A(x) = sqrt( (1 + 2*x*W(x))*(1 + 2*x^2*W(x)) )
where
W(x) = 1 + (1 + x)*(2*x) + (2 + x)*(1 + 2*x)*(2*x)^2/2! + (3 + x)*(2 + 2*x)*(1 + 3*x)*(2*x)^3/3! + (4 + x)*(3 + 2*x)*(2 + 3*x)*(1 + 4*x)*(2*x)^4/4! + (5 + x)*(4 + 2*x)*(3 + 3*x)*(2 + 4*x)*(1 + 5*x)*(2*x)^5/5! + ...
Explicitly,
W(x) = 1 + 2*x + 12*x^2/2! + 108*x^3/3! + 1312*x^4/4! + 20320*x^5/5! + 381408*x^6/6! + 8420160*x^7/7! + 213813248*x^8/8! + ... + A316704(n)*x^n/n! + ...
where W(x) satisfies
W(x)/(1 + 2*x*W(x)) = ( W(x)/(1 + 2*x^2*W(x)) )^x.
-
{a(n) = my(A); A = sum(m=0,n, x^m/m! * prod(k=1,m, 2*m+1-2*k + (2*k-1)*x +x*O(x^n))); n!*polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
A363110
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + (n-k+1)*x) / (1 + k*x + (n-k+1)*x^2).
Original entry on oeis.org
1, 1, 2, 4, 10, 28, 88, 306, 1158, 4730, 20722, 96776, 479340, 2507510, 13804014, 79718782, 481614806, 3036358968, 19932689952, 135981543762, 962319171782, 7053068549250, 53458038451082, 418440466421960, 3378290373259300, 28099682071640734, 240537280709926718
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 88*x^6 + 306*x^7 + 1158*x^8 + 4730*x^9 + 20722*x^10 + 96776*x^11 + 479340*x^12 + ...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1 + 2*x)*(2 + x)/((1 + x + 2*x^2)*(1 + 2*x + x^2)) + x^3*(1 + 3*x)*(2 + 2*x)*(3 + x)/((1 + x + 3*x^2)*(1 + 2*x + 2*x^2)*(1 + 3*x + x^2)) + x^4*(1 + 4*x)*(2 + 3*x)*(3 + 2*x)*(4 + x)/((1 + x + 4*x^2)*(1 + 2*x + 3*x^2)*(1 + 3*x + 2*x^2)*(1 + 4*x + x^2)) + ...
-
{a(n) = polcoeff( A = sum(m=0, n, x^m*prod(k=1, m, (k + (m-k+1)*x)/(1 + k*x + (m-k+1)*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-6 of 6 results.
Comments