A316370
E.g.f.: Sum_{n>=0} x^n/n! * Product_{k=1..n} (n+1-k) + k*x.
Original entry on oeis.org
1, 1, 4, 21, 152, 1410, 15774, 207984, 3153632, 54074952, 1034749080, 21858562440, 505274905992, 12686390177136, 343815306388176, 10003360314147480, 311003061260534400, 10289575224413883840, 360967225620921712704, 13383588039651073512576, 522943874535097662998400, 21477474848621411837159040, 924978962293503284606947200
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 21*x^3/3! + 152*x^4/4! + 1410*x^5/5! + 15774*x^6/6! + 207984*x^7/7! + 3153632*x^8/8! + 54074952*x^9/9! + 1034749080*x^10/10! + ...
such that
A(x) = 1 + (1+x)*x + (2 + x)*(1 + 2*x)*x^2/2! + (3 + x)*(2 + 2*x)*(1 + 3*x)*x^3/3! + (4 + x)*(3 + 2*x)*(2 + 3*x)*(1 + 4*x)*x^4/4! + (5 + x)*(4 + 2*x)*(3 + 3*x)*(2 + 4*x)*(1 + 5*x)*x^5/5! + ...
Also,
A(x)^2/(1 + x*A(x)) = 1 + (1 + 2*x)*x + (2 + 2*x)*(1 + 3*x)*x^2/2! + (3 + 2*x)*(2 + 3*x)*(1 + 4*x)*x^3/3! + (4 + 2*x)*(3 + 3*x)*(2 + 4*x)*(1 + 5*x)*x^4/4! + (5 + 2*x)*(4 + 3*x)*(3 + 4*x)*(2 + 5*x)*(1 + 6*x)*x^5/5! + ...
And,
A(x)^3/((1 + x*A(x))*(1 + x^2*A(x))) = 1 + (2 + 2*x)*x + (3 + 2*x)*(2 + 3*x)*x^2/2! + (4 + 2*x)*(3 + 3*x)*(2 + 4*x)*x^3/3! + (5 + 2*x)*(4 + 3*x)*(3 + 4*x)*(2 + 5*x)*x^4/4! + (6 + 2*x)*(5 + 3*x)*(4 + 4*x)*(3 + 5*x)*(2 + 6*x)*x^5/5! + ...
RELATED SERIES.
A(x)/(1 + x*A(x)) = 1 + 2*x^2/2! + 3*x^3/3! + 32*x^4/4! + 190*x^5/5! + 1974*x^6/6! + 21588*x^7/7! + 289232*x^8/8! + 4387752*x^9/9! + ...
A(x)/(1 + x^2*A(x)) = 1 + x + 2*x^2/2! + 9*x^3/3! + 56*x^4/4! + 450*x^5/5! + 4494*x^6/6! + 53424*x^7/7! + 738464*x^8/8! + 11642184*x^9/9! + ...
where ( A(x)/(1 + x^2*A(x)) )^x = A(x)/(1 + x*A(x)).
-
/* From Biexponential Series: */
{a(n) = my(A); A = sum(m=0,n, x^m/m! * prod(k=1,m, m+1-k + k*x +x*O(x^n))); n!*polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
-
/* From Biexponential Functional Equation: */
{a(n) = my(A=1); for(i=0,n, A = (1 + x*A)*( A/(1 + x^2*A +x*O(x^n) ) )^x ); n!*polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
A316700
E.g.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n/n! * Product_{k=1..n} (n+1-k) + k/A(x).
Original entry on oeis.org
1, 2, 5, 19, 87, 481, 3058, 22317, 183501, 1695937, 17383266, 196331895, 2413283755, 32071547509, 457005861978, 6958913121081, 112742453743929, 1940037369861185, 35336786759749378, 679714283742254627, 13755601059097927791, 292116789342048656525, 6489891770655364327818, 150589804371710317610221, 3642747130658567662759333, 91770842180615381158770081
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 5*x^2/2! + 19*x^3/3! + 87*x^4/4! + 481*x^5/5! + 3058*x^6/6! + 22317*x^7/7! + 183501*x^8/8! + 1695937*x^9/9! + ...
such that A = A(x) satisfies
A(x) = 1 + (1 + 1/A)*x + (2 + 1/A)*(1 + 2/A)*x^2/2! + (3 + 1/A)*(2 + 2/A)*(1 + 3/A)*x^3/3! + (4 + 1/A)*(3 + 2/A)*(2 + 3/A)*(1 + 4/A)*x^4/4! + (5 + 1/A)*(4 + 2/A)*(3 + 3/A)*(2 + 4/A)*(1 + 5/A)*x^5/5! + ...
Also,
A(x)^2/(1 + x*A(x)) = 1 + (1 + 2/A)*x + (2 + 2/A)*(1 + 3/A)*x^2/2! + (3 + 2/A)*(2 + 3/A)*(1 + 4/A)*x^3/3! + (4 + 2/A)*(3 + 3/A)*(2 + 4/A)*(1 + 5/A)*x^4/4! + (5 + 2/A)*(4 + 3/A)*(3 + 4/A)*(2 + 5/A)*(1 + 6/A)*x^5/5! + ...
And,
A(x)^3/((1 + x*A(x))*(1 + x)) = 1 + (2 + 2/A)*x + (3 + 2/A)*(2 + 3/A)*x^2/2! + (4 + 2/A)*(3 + 3/A)*(2 + 4/A)*x^3/3! + (5 + 2/A)*(4 + 3/A)*(3 + 4/A)*(2 + 5/A)*x^4/4! + (6 + 2/A)*(5 + 3/A)*(4 + 4/A)*(3 + 5/A)*(2 + 6/A)*x^5/5! + ...
RELATED SERIES.
A(x)/(1+x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 47*x^4/4! + 246*x^5/5! + 1582*x^6/6! + 11243*x^7/7! + 93557*x^8/8! + 853924*x^9/9! + ...
A(x)/(1 + x*A(x)) = 1 + x - x^2/2! - 5*x^3/3! - 5*x^4/4! + 41*x^5/5! + 256*x^6/6! + 533*x^7/7! - 4451*x^8/8! - 57479*x^9/9! + ...
where ( A(x)/(1 + x*A(x)) )^A(x) = A(x)/(1 + x).
Let G(x) = A(x*G(x)) and A(x) = G(x/A(x)), where G(x) begins
G(x) = 1 + 2*x + 13*x^2/2! + 157*x^3/3! + 2819*x^4/4! + 67621*x^5/5! + 2036230*x^6/6! + 73907639*x^7/7! + 3142556933*x^8/8! + ... + A316701(n)*x^n/n! + ...
then G(x)/(1 + x*G(x)) = ( G(x)/(1 + x*G(x)^2) )^G(x)
and G(x) = (1/x)*Series_Reversion( x/A(x) ).
-
nmax = 25; aa = ConstantArray[0, nmax]; aa[[1]] = 2; Do[y = 1 + 2*x + Sum[aa[[k]]*x^k, {k, 2, j - 1}] + koef*x^j; sol = Solve[SeriesCoefficient[(1 + x)*(y/(1 + x*y))^y - y, {x, 0, j + 1}] == 0, koef][[1]]; aa[[j]] = koef /. sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 16 2020 *)
-
/* From Biexponential Series: */
{a(n) = my(A=1); for(i=1,n, A = sum(m=0, n, x^m/m! * prod(k=1, m, m+1-k + k/A +x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
A316701
E.g.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n/n! * Product_{k=1..n} (n+1-k) + k*A(x).
Original entry on oeis.org
1, 2, 13, 157, 2819, 67621, 2036230, 73907639, 3142556933, 153268340377, 8436526507286, 517427997295353, 34994424316034815, 2587503674068863681, 207665084850599068022, 17979537469340405579571, 1670426465731302891946025, 165771247503060676475253809, 17501167047878021578046031334, 1958599892703021903310163005669
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 13*x^2/2! + 157*x^3/3! + 2819*x^4/4! + 67621*x^5/5! + 2036230*x^6/6! + 73907639*x^7/7! + 3142556933*x^8/8! + 153268340377*x^9/9! + ...
such that A = A(x) satisfies
A(x) = 1 + (1 + A)*x + (2 + A)*(1 + 2*A)*x^2/2! + (3 + A)*(2 + 2*A)*(1 + 3*A)*x^3/3! + (4 + A)*(3 + 2*A)*(2 + 3*A)*(1 + 4*A)*x^4/4! + (5 + A)*(4 + 2*A)*(3 + 3*A)*(2 + 4*A)*(1 + 5*A)*x^5/5! + ...
Also,
A(x)^2/(1 + x*A(x)) = 1 + (1 + 2*A)*x + (2 + 2*A)*(1 + 3*A)*x^2/2! + (3 + 2*A)*(2 + 3*A)*(1 + 4*A)*x^3/3! + (4 + 2*A)*(3 + 3*A)*(2 + 4*A)*(1 + 5*A)*x^4/4! + (5 + 2*A)*(4 + 3*A)*(3 + 4*A)*(2 + 5*A)*(1 + 6*A)*x^5/5! + ...
And,
A(x)^3/((1 + x*A(x))*(1 + x*A(x)^2)) = 1 + (2 + 2*A)*x + (3 + 2*A)*(2 + 3*A)*x^2/2! + (4 + 2*A)*(3 + 3*A)*(2 + 4*A)*x^3/3! + (5 + 2*A)*(4 + 3*A)*(3 + 4*A)*(2 + 5*A)*x^4/4! + (6 + 2*A)*(5 + 3*A)*(4 + 4*A)*(3 + 5*A)*(2 + 6*A)*x^5/5! + ...
RELATED SERIES.
A(x)/(1 + x*A(x)) = 1 + x + 7*x^2/2! + 85*x^3/3! + 1527*x^4/4! + 36621*x^5/5! + 1102348*x^6/6! + 39996727*x^7/7! + 1700108469*x^8/8! + ...
A(x)/(1 + x*A(x)^2) = 1 + x + 3*x^2/3! + 22*x^3/3! + 299*x^4/4! + 6086*x^5/5! + 164782*x^6/6! + 5553185*x^7/7! + 223540669*x^8/8! + ...
where ( A(x)/(1 + x*A(x)^2) )^A(x) = A(x)/(1 + x*A(x)).
Let G(x) = A(x/G(x)) and A(x) = G(x*A(x)), where G(x) begins
G(x) = 1 + 2*x + 5*x^2/2! + 19*x^3/3! + 87*x^4/4! + 481*x^5/5! + 3058*x^6/6! + 22317*x^7/7! + 183501*x^8/8! + ... + A316700(n)*x^n/n! + ...
then G(x)/(1 + x) = ( G(x)/(1 + x*G(x)) )^G(x)
and G(x) = x/Series_Reversion( x*A(x) ).
-
nmax = 25; aa = ConstantArray[0, nmax]; aa[[1]] = 2; Do[y = 1 + 2*x + Sum[aa[[k]]*x^k, {k, 2, j - 1}] + koef*x^j; sol = Solve[SeriesCoefficient[(1 + x*y)*(y/(1 + x*y^2))^y - y, {x, 0, j + 1}] == 0, koef][[1]]; aa[[j]] = koef /. sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 16 2020 *)
-
/* From Biexponential Series: */
{a(n) = my(A=1); for(i=1,n, A = sum(m=0, n, x^m/m! * prod(k=1, m, m+1-k + k*A +x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
Showing 1-3 of 3 results.
Comments