A316408 Number of multisets of exactly seven nonempty binary words with a total of n letters such that no word has a majority of 0's.
1, 3, 10, 33, 98, 291, 826, 2320, 6297, 16989, 44828, 117352, 302429, 773496, 1954845, 4905939, 12195457, 30123762, 73825711, 179891662, 435427632, 1048510795, 2510267189, 5981859208, 14182293004, 33482368279, 78690956088, 184229429914, 429570180998
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..1000
Programs
-
Maple
g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2): b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add( binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 8) end: a:= n-> coeff(b(n$2), x, 7): seq(a(n), n=7..35);
Formula
a(n) = [x^n y^7] 1/Product_{j>=1} (1-y*x^j)^A027306(j).