A316413 Heinz numbers of integer partitions whose length divides their sum.
2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 37, 39, 41, 43, 46, 47, 49, 53, 55, 57, 59, 61, 62, 64, 67, 68, 71, 73, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 97, 98, 99, 100, 101, 103, 105, 107, 109, 110
Offset: 1
Keywords
Examples
Sequence of partitions whose length divides their sum begins (1), (2), (11), (3), (4), (111), (22), (31), (5), (6), (1111), (7), (8), (42), (51), (9), (33), (222), (411).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1327 terms from R. J. Mathar)
Crossrefs
Programs
-
Maple
isA326413 := proc(n) psigsu := A056239(n) ; psigle := numtheory[bigomega](n) ; if modp(psigsu,psigle) = 0 then true; else false; end if; end proc: n := 1: for i from 2 to 3000 do if isA326413(i) then printf("%d %d\n",n,i); n := n+1 ; end if; end do: # R. J. Mathar, Aug 09 2019 # second Maple program: q:= n-> (l-> nops(l)>0 and irem(add(i, i=l), nops(l))=0)(map (i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])): select(q, [$1..110])[]; # Alois P. Heinz, Nov 19 2021
-
Mathematica
Select[Range[2,100],Divisible[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]],PrimeOmega[#]]&]
Comments