cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316429 Heinz numbers of integer partitions whose length is equal to their LCM.

Original entry on oeis.org

2, 6, 9, 20, 50, 56, 84, 125, 126, 176, 189, 196, 240, 294, 360, 416, 441, 540, 600, 624, 686, 810, 900, 936, 968, 1029, 1040, 1088, 1215, 1350, 1404, 1500, 1560, 2025, 2106, 2250, 2340, 2401, 2432, 2600, 2704, 3159, 3375, 3510, 3648, 3750, 3900, 4056, 5265
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2018

Keywords

Comments

A110295 is a subsequence.

Examples

			3750 is the Heinz number of (3,3,3,3,2,1), whose length and lcm are both 6.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,200],PrimeOmega[#]==LCM@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]]&]
  • PARI
    heinz(n) = my(f=factor(n), pr=f[,1]~,exps=f[,2], res=vector(vecsum(exps)), t=0); for(i = 1, #pr, pr[i] = primepi(pr[i]); for(j=1, exps[i],t++; res[t] = pr[i])); res
    is(n) = my(h = heinz(n)); lcm(h)==#h \\ David A. Corneth, Jul 05 2018