cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316436 Sum divided by GCD of the integer partition with Heinz number n > 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 4, 1, 5, 5, 4, 1, 5, 1, 5, 3, 6, 1, 5, 2, 7, 3, 6, 1, 6, 1, 5, 7, 8, 7, 6, 1, 9, 4, 6, 1, 7, 1, 7, 7, 10, 1, 6, 2, 7, 9, 8, 1, 7, 8, 7, 5, 11, 1, 7, 1, 12, 4, 6, 3, 8, 1, 9, 11, 8, 1, 7, 1, 13, 8, 10, 9, 9, 1, 7, 4, 14, 1, 8, 10, 15, 6, 8, 1, 8, 5, 11, 13, 16, 11, 7, 1, 9, 9, 8, 1, 10, 1, 9, 9
Offset: 2

Views

Author

Gus Wiseman, Jul 03 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Maple
    a:= n-> (l-> add(i, i=l)/igcd(l[]))(map(i->
          numtheory[pi](i[1])$i[2], ifactors(n)[2])):
    seq(a(n), n=2..100);  # Alois P. Heinz, Jul 03 2018
  • Mathematica
    Table[With[{pms=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]},Total[pms]/GCD@@pms],{n,2,100}]
  • PARI
    A316436(n) = { my(f = factor(n), pis = apply(p -> primepi(p), f[, 1]~), es = f[, 2]~, g = gcd(pis)); sum(i=1, #f~, pis[i]*es[i])/g; }; \\ Antti Karttunen, Sep 10 2018

Extensions

More terms from Antti Karttunen, Sep 10 2018