A316490 Smallest positive number of the form 8*k + 4 that can be expressed as the sum of four distinct odd squares in exactly n ways, or 0 if no such number exists.
4, 84, 156, 260, 380, 596, 420, 588, 732, 884, 660, 876, 900, 1164, 924, 1236, 1140, 1452, 1428, 1524, 1380, 1260, 1620, 2060, 1596, 1764, 1740, 2196, 2364, 2628, 1980, 3236, 2244, 2676, 2220, 2100, 2460, 3916, 2844, 2916, 2580, 2340, 2700, 4532, 3396, 4300
Offset: 0
Keywords
Examples
The smallest positive number of the form 8*k + 4 is 4, which cannot be expressed as the sum of four distinct odd squares, so a(0) = 4. The smallest number that can be expressed as the sum of four distinct odd squares is the sum of the first four odd squares, i.e., 1^2 + 3^2 + 5^2 + 7^2 = 84, which cannot be so expressed in any other way, so a(1) = 84. a(6) = 420 because 420 is the smallest number that can be expressed as the sum of four distinct odd squares in exactly 6 ways: 420 = 1^2 + 3^2 + 7^2 + 19^2 = 1^2 + 3^2 + 11^2 + 17^2 = 1^2 + 5^2 + 13^2 + 15^2 = 1^2 + 7^2 + 9^2 + 17^2 = 5^2 + 7^2 + 11^2 + 15^2 = 7^2 + 9^2 + 11^2 + 13^2. (Sums such as 3^2 + 5^2 + 5^2 + 19^2 are not counted because the four odd squares are not all distinct.)
Links
- David A. Corneth, Table of n, a(n) for n = 0..570 (first 501 terms from Alois P. Heinz)
- David A. Corneth, a(0)..a(9999) for values <= 4*10^6
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(min(i, t)<1, 0, b(n, i-2, t)+ `if`(i^2>n, 0, b(n-i^2, i-2, t-1)))) end: a:= proc(n) option remember; local k; for k from 4 by 8 while n <> b(k, (r-> r+1-irem(r, 2))(isqrt(k)), 4) do od; k end: seq(a(n), n=0..50); # Alois P. Heinz, Aug 07 2018
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[Min[i, t] < 1, 0, b[n, i - 2, t] + If[i^2 > n, 0, b[n - i^2, i - 2, t - 1]]]]; a[n_] := a[n] = Module[{k}, For[k = 4, n != b[k, # + 1 - Mod[#, 2]& @ Floor @ Sqrt[k], 4], k += 8]; k]; a /@ Range[0, 50] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
Comments