cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A317709 Aperiodic relatively prime tree numbers. Matula-Goebel numbers of aperiodic relatively prime trees.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 12, 13, 15, 18, 20, 22, 24, 26, 29, 30, 31, 33, 37, 40, 41, 44, 45, 47, 48, 50, 52, 54, 55, 58, 60, 61, 62, 66, 71, 72, 74, 75, 78, 79, 80, 82, 88, 89, 90, 93, 94, 96, 99, 101, 104, 108, 109, 110, 113, 116, 120, 122, 123, 124, 127, 130
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is in the sequence iff either n = 1 or n is a prime number whose prime index already belongs to the sequence or n is not a perfect power and its prime indices are relatively prime numbers already belonging to the sequence. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of aperiodic relatively prime tree numbers together with their Matula-Goebel trees begins:
   1: o
   2: (o)
   3: ((o))
   5: (((o)))
   6: (o(o))
  10: (o((o)))
  11: ((((o))))
  12: (oo(o))
  13: ((o(o)))
  15: ((o)((o)))
  18: (o(o)(o))
  20: (oo((o)))
  22: (o(((o))))
  24: (ooo(o))
  26: (o(o(o)))
  29: ((o((o))))
  30: (o(o)((o)))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[GCD@@FactorInteger[n][[All,2]]==1,GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[100],rupQ]

A316500 Number of unlabeled rooted identity trees with n nodes in which the branches of any node with more than one branch have empty intersection.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 22, 46, 96, 205, 442, 976, 2146, 4789, 10719, 24202, 54841, 124967, 285724, 656011, 1510929, 3491151, 8088692, 18790084
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2018

Keywords

Examples

			The a(7) = 11 rooted identity trees:
  ((((((o))))))
  ((((o(o)))))
  (((o((o)))))
  ((o(((o)))))
  ((o(o(o))))
  (((o)((o))))
  (o((((o)))))
  (o((o(o))))
  (o(o((o))))
  ((o)(((o))))
  (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],UnsameQ@@#&&Or[Length[#]==1,Intersection@@#=={}]&]];
    Table[Length[strut[n]],{n,20}]

A316771 Number of series-reduced locally nonintersecting rooted trees whose leaves form the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 4, 0, 1, 0, 2, 1, 4, 1, 0, 1, 1, 1, 6, 1, 1, 1, 4, 1, 4, 1, 2, 2, 1, 1, 8, 0, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 12, 1, 1, 2, 0, 1, 4, 1, 2, 1, 4, 1, 17, 1, 1, 2, 2, 1, 4, 1, 8, 0, 1, 1, 12, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally nonintersecting if the intersection of all branches directly under any given root is empty.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(36) = 6 trees:
  (1(2(12)))
  (2(1(12)))
  (1(122))
  (2(112))
  (12(12))
  (1122)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};
    sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=gro[m]=If[Length[m]==1,List/@m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    Table[Length[Select[gro[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],And@@Cases[#,q:{__List}:>Intersection@@q=={},{0,Infinity}]&]],{n,100}]

A316772 Number of series-reduced locally nonintersecting rooted trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 1, 2, 4, 11, 27, 75, 202, 565, 1602, 4617, 13472, 39781, 118604, 356605, 1080178, 3293109, 10097356, 31118507, 96341035
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2018

Keywords

Comments

A rooted tree is series-reduced if all non-leaf nodes have at least two branches. It is locally nonintersecting if the intersection of all branches directly under any given root is empty.

Examples

			The a(6) = 27 trees:
6,
(15),
(24),
(1(14)), (114),
(1(23)), (2(13)), (3(12)), (123),
(1(1(13))), (1(113)), (11(13)), (1113),
(1(2(12))), (1(122)), (2(1(12))), (2(112)), (12(12)), (1122),
(1(1(1(12)))), (1(1(112))), (1(11(12))), (1(1112)), (11(1(12))), (11(112)), (111(12)), (11112).
		

Crossrefs

Programs

  • Mathematica
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],Intersection@@#=={}&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,10}]

Extensions

a(17)-a(20) from Robert Price, Sep 14 2018
Showing 1-4 of 4 results.