A324764
Number of anti-transitive rooted identity trees with n nodes.
Original entry on oeis.org
1, 1, 1, 1, 3, 4, 9, 20, 41, 89, 196, 443, 987, 2246, 5114, 11757, 27122, 62898, 146392, 342204, 802429, 1887882
Offset: 1
The a(1) = 1 through a(7) = 9 anti-transitive rooted identity trees:
o (o) ((o)) (((o))) ((o(o))) (((o(o)))) ((o(o(o))))
(o((o))) ((o((o)))) (o((o(o))))
((((o)))) (o(((o)))) ((((o(o)))))
(((((o))))) (((o)((o))))
(((o((o)))))
((o)(((o))))
((o(((o)))))
(o((((o)))))
((((((o))))))
Cf.
A324694,
A324751,
A324756,
A324758,
A324765,
A324767,
A324768,
A324770,
A324839,
A324840,
A324844.
-
idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
Table[Length[Select[idall[n],Intersection[Union@@#,#]=={}&]],{n,10}]
A317708
Number of aperiodic relatively prime trees with n nodes.
Original entry on oeis.org
1, 1, 1, 2, 4, 10, 20, 48, 108, 255, 595, 1435, 3434, 8372, 20419, 50289, 124289, 309122, 771508, 1934462
Offset: 1
The a(6) = 10 aperiodic relatively prime trees:
(((((o)))))
(((o(o))))
((o((o))))
((oo(o)))
(o(((o))))
(o(o(o)))
((o)((o)))
(oo((o)))
(o(o)(o))
(ooo(o))
-
rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,And[Intersection@@#=={},GCD@@Length/@Split[#]==1]]&],{ptn,IntegerPartitions[n-1]}]];
Table[Length[rurt[n]],{n,10}]
A324767
Number of recursively anti-transitive rooted identity trees with n nodes.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 9, 17, 33, 63, 126, 254, 511, 1039, 2124, 4371, 9059, 18839, 39339, 82385, 173111, 364829, 771010, 1633313
Offset: 1
The a(4) = 1 through a(8) = 9 recursively anti-transitive rooted identity trees:
(((o))) (o((o))) ((o((o)))) (((o((o))))) ((o)(o((o))))
((((o)))) (o(((o)))) ((o)(((o)))) (o((o((o)))))
(((((o))))) ((o(((o))))) ((((o((o))))))
(o((((o))))) (((o)(((o)))))
((((((o)))))) (((o(((o))))))
((o)((((o)))))
((o((((o))))))
(o(((((o))))))
(((((((o)))))))
-
iallt[n_]:=Select[Union[Sort/@Join@@(Tuples[iallt/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&&Intersection[Union@@#,#]=={}&];
Table[Length[iallt[n]],{n,10}]
A316501
Number of unlabeled rooted trees with n nodes in which the branches of any node with more than one distinct branch have empty intersection.
Original entry on oeis.org
1, 1, 2, 4, 9, 19, 45, 103, 250, 611, 1528, 3853, 9875, 25481, 66382, 174085, 459541, 1219462
Offset: 1
The a(6) = 19 rooted trees:
(((((o)))))
((((oo))))
(((o(o))))
(((ooo)))
((o((o))))
((o(oo)))
(((o)(o)))
((oo(o)))
((oooo))
(o(((o))))
(o((oo)))
(o(o(o)))
(o(ooo))
((o)((o)))
(oo((o)))
(oo(oo))
(o(o)(o))
(ooo(o))
(ooooo)
-
strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],Or[Length[Union[#]]==1,Intersection@@#=={}]&]];
Table[Length[strut[n]],{n,15}]
A316770
Number of series-reduced locally nonintersecting rooted identity trees whose leaves form an integer partition of n.
Original entry on oeis.org
1, 1, 2, 3, 6, 13, 28, 64, 153, 379, 939, 2385, 6121, 15871, 41529, 109509, 290607, 775842, 2081874, 5612176, 15191329, 41274052
Offset: 1
The a(6) = 13 trees:
(1(1(1(12))))
(1(1(13)))
(1(2(12)))
(2(1(12)))
(12(12))
(1(14))
(1(23))
(2(13))
(3(12))
(123)
(15)
(24)
6
Examples of series-reduced rooted identity trees that are not locally nonintersecting are ((12)(13)) and ((12)(1(12))).
Cf.
A000081,
A000669,
A001678,
A141268,
A292504,
A316500,
A316651,
A316652,
A316655,
A316696,
A316768.
-
nonintQ[u_]:=Intersection@@u=={};
nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],And[UnsameQ@@#,nonintQ[#]]&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
Table[Length[nms[n]],{n,15}]
A316772
Number of series-reduced locally nonintersecting rooted trees whose leaves form an integer partition of n.
Original entry on oeis.org
1, 1, 2, 4, 11, 27, 75, 202, 565, 1602, 4617, 13472, 39781, 118604, 356605, 1080178, 3293109, 10097356, 31118507, 96341035
Offset: 1
The a(6) = 27 trees:
6,
(15),
(24),
(1(14)), (114),
(1(23)), (2(13)), (3(12)), (123),
(1(1(13))), (1(113)), (11(13)), (1113),
(1(2(12))), (1(122)), (2(1(12))), (2(112)), (12(12)), (1122),
(1(1(1(12)))), (1(1(112))), (1(11(12))), (1(1112)), (11(1(12))), (11(112)), (111(12)), (11112).
Cf.
A000081,
A000669,
A001678,
A141268,
A292504,
A316500,
A316501,
A316503,
A316651,
A316652,
A316655.
-
nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],Intersection@@#=={}&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
Table[Length[nms[n]],{n,10}]
Showing 1-6 of 6 results.
Comments