cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A324764 Number of anti-transitive rooted identity trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 9, 20, 41, 89, 196, 443, 987, 2246, 5114, 11757, 27122, 62898, 146392, 342204, 802429, 1887882
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root. It is anti-transitive if the branches of the branches of the root are disjoint from the branches of the root.
Also the number of finitary sets S with n brackets where no element of an element of S is also an element of S. For example, the a(8) = 20 finitary sets are (o = {}):
{{{{{{{o}}}}}}}
{{{{{o,{o}}}}}}
{{{{o,{{o}}}}}}
{{{o,{{{o}}}}}}
{{{o,{o,{o}}}}}
{{{{o},{{o}}}}}
{{o,{{{{o}}}}}}
{{o,{{o,{o}}}}}
{{o,{o,{{o}}}}}
{{{o},{{{o}}}}}
{{{o},{o,{o}}}}
{{o,{o},{{o}}}}
{o,{{{{{o}}}}}}
{o,{{{o,{o}}}}}
{o,{{o,{{o}}}}}
{o,{{o},{{o}}}}
{{o},{{{{o}}}}}
{{o},{{o,{o}}}}
{{o},{o,{{o}}}}
{{{o}},{o,{o}}}

Examples

			The a(1) = 1 through a(7) = 9 anti-transitive rooted identity trees:
  o  (o)  ((o))  (((o)))  ((o(o)))   (((o(o))))   ((o(o(o))))
                          (o((o)))   ((o((o))))   (o((o(o))))
                          ((((o))))  (o(((o))))   ((((o(o)))))
                                     (((((o)))))  (((o)((o))))
                                                  (((o((o)))))
                                                  ((o)(((o))))
                                                  ((o(((o)))))
                                                  (o((((o)))))
                                                  ((((((o))))))
		

Crossrefs

Programs

  • Mathematica
    idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
    Table[Length[Select[idall[n],Intersection[Union@@#,#]=={}&]],{n,10}]

Extensions

a(21)-a(22) from Jinyuan Wang, Jun 20 2020

A317708 Number of aperiodic relatively prime trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 20, 48, 108, 255, 595, 1435, 3434, 8372, 20419, 50289, 124289, 309122, 771508, 1934462
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

An unlabeled rooted tree is aperiodic and relatively prime iff either it is a single node or a single node with a single aperiodic relatively prime branch, or the branches directly under any given node have empty intersection (relatively prime) and also have relatively prime multiplicities (aperiodic) and are themselves aperiodic relatively prime trees.

Examples

			The a(6) = 10 aperiodic relatively prime trees:
  (((((o)))))
  (((o(o))))
  ((o((o))))
  ((oo(o)))
  (o(((o))))
  (o(o(o)))
  ((o)((o)))
  (oo((o)))
  (o(o)(o))
  (ooo(o))
		

Crossrefs

Programs

  • Mathematica
    rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,And[Intersection@@#=={},GCD@@Length/@Split[#]==1]]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[rurt[n]],{n,10}]

A324767 Number of recursively anti-transitive rooted identity trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 9, 17, 33, 63, 126, 254, 511, 1039, 2124, 4371, 9059, 18839, 39339, 82385, 173111, 364829, 771010, 1633313
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of any terminal subtree is a branch of the same subtree. It is an identity tree if there are no repeated branches directly under a common root.
Also the number of finitary sets with n brackets where, at any level, no element of an element of a set is an element of the same set. For example, the a(8) = 9 finitary sets are (o = {}):
{{{{{{{o}}}}}}}
{{{{o,{{o}}}}}}
{{{o,{{{o}}}}}}
{{o,{{{{o}}}}}}
{{{o},{{{o}}}}}
{o,{{{{{o}}}}}}
{o,{{o,{{o}}}}}
{{o},{{{{o}}}}}
{{o},{o,{{o}}}}
The Matula-Goebel numbers of these trees are given by A324766.

Examples

			The a(4) = 1 through a(8) = 9 recursively anti-transitive rooted identity trees:
  (((o)))  (o((o)))   ((o((o))))   (((o((o)))))   ((o)(o((o))))
           ((((o))))  (o(((o))))   ((o)(((o))))   (o((o((o)))))
                      (((((o)))))  ((o(((o)))))   ((((o((o))))))
                                   (o((((o)))))   (((o)(((o)))))
                                   ((((((o))))))  (((o(((o))))))
                                                  ((o)((((o)))))
                                                  ((o((((o))))))
                                                  (o(((((o))))))
                                                  (((((((o)))))))
		

Crossrefs

Cf. A324695, A324751, A324758, A324764 (non-recursive version), A324765 (non-identity version), A324766, A324770, A324839, A324840, A324844.

Programs

  • Mathematica
    iallt[n_]:=Select[Union[Sort/@Join@@(Tuples[iallt/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&&Intersection[Union@@#,#]=={}&];
    Table[Length[iallt[n]],{n,10}]

A316501 Number of unlabeled rooted trees with n nodes in which the branches of any node with more than one distinct branch have empty intersection.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 45, 103, 250, 611, 1528, 3853, 9875, 25481, 66382, 174085, 459541, 1219462
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2018

Keywords

Examples

			The a(6) = 19 rooted trees:
  (((((o)))))
  ((((oo))))
  (((o(o))))
  (((ooo)))
  ((o((o))))
  ((o(oo)))
  (((o)(o)))
  ((oo(o)))
  ((oooo))
  (o(((o))))
  (o((oo)))
  (o(o(o)))
  (o(ooo))
  ((o)((o)))
  (oo((o)))
  (oo(oo))
  (o(o)(o))
  (ooo(o))
  (ooooo)
		

Crossrefs

Programs

  • Mathematica
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],Or[Length[Union[#]]==1,Intersection@@#=={}]&]];
    Table[Length[strut[n]],{n,15}]

A316770 Number of series-reduced locally nonintersecting rooted identity trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 13, 28, 64, 153, 379, 939, 2385, 6121, 15871, 41529, 109509, 290607, 775842, 2081874, 5612176, 15191329, 41274052
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is locally nonintersecting if the intersection of all branches directly under any given root is empty. It is an identity tree if no branch appears multiple times under the same root.

Examples

			The a(6) = 13 trees:
  (1(1(1(12))))
  (1(1(13)))
  (1(2(12)))
  (2(1(12)))
  (12(12))
  (1(14))
  (1(23))
  (2(13))
  (3(12))
  (123)
  (15)
  (24)
  6
Examples of series-reduced rooted identity trees that are not locally nonintersecting are ((12)(13)) and ((12)(1(12))).
		

Crossrefs

Programs

  • Mathematica
    nonintQ[u_]:=Intersection@@u=={};
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],And[UnsameQ@@#,nonintQ[#]]&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,15}]

Extensions

a(21)-a(22) from Robert Price, Sep 14 2018

A316772 Number of series-reduced locally nonintersecting rooted trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 1, 2, 4, 11, 27, 75, 202, 565, 1602, 4617, 13472, 39781, 118604, 356605, 1080178, 3293109, 10097356, 31118507, 96341035
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2018

Keywords

Comments

A rooted tree is series-reduced if all non-leaf nodes have at least two branches. It is locally nonintersecting if the intersection of all branches directly under any given root is empty.

Examples

			The a(6) = 27 trees:
6,
(15),
(24),
(1(14)), (114),
(1(23)), (2(13)), (3(12)), (123),
(1(1(13))), (1(113)), (11(13)), (1113),
(1(2(12))), (1(122)), (2(1(12))), (2(112)), (12(12)), (1122),
(1(1(1(12)))), (1(1(112))), (1(11(12))), (1(1112)), (11(1(12))), (11(112)), (111(12)), (11112).
		

Crossrefs

Programs

  • Mathematica
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],Intersection@@#=={}&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,10}]

Extensions

a(17)-a(20) from Robert Price, Sep 14 2018
Showing 1-6 of 6 results.