cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316560 Number of cyclic subgroups of the group GL(2, Z(n)), counting conjugates as distinct.

Original entry on oeis.org

1, 5, 28, 62, 176, 148, 610, 696, 1252, 920, 2296, 1972, 4874, 3523, 6040, 6320, 8136, 7348, 14984, 13568, 22124, 11920, 17396, 23952, 29846, 28172, 38044, 47656, 47282, 32908, 75036, 53520, 71768, 42312, 145852, 99892, 123524, 88456, 187036, 179200, 152290
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([2..7], n->Sum( Filtered( ConjugacyClassesSubgroups( GL(2, Integers mod n)), x->IsCyclic( Representative(x))), Size)));
    
  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    a(n)={sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, 1/eulerphi(MatOrder(M)))))))}

Formula

a(n) = Sum_{k=1..A316565(n)} 1/phi(A316566(n,k)).