A316565 Maximum order of an element of the general linear group GL(2, Z(n)).
1, 3, 8, 6, 24, 24, 48, 12, 24, 60, 120, 24, 168, 48, 60, 24, 288, 24, 360, 60, 168, 330, 528, 24, 120, 168, 72, 84, 840, 120, 960, 48, 440, 816, 420, 36, 1368, 360, 312, 60, 1680, 168, 1848, 330, 180, 1518, 2208, 48, 336, 300, 816, 168, 2808, 72, 1320, 168
Offset: 1
Keywords
Programs
-
GAP
Concatenation([1], List([2..10], n->Maximum(List(GL(2, Integers mod n), Order))));
-
PARI
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k} a(n)={my(m=0); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, m=max(m, MatOrder(M))))))); m}
Formula
Conjecture: a(p) = (p-1)*(p+1) for prime p.
From Robert Israel, Dec 19 2019: (Start)
The conjecture is true. In fact for T in GL(2,Z(p)), the order of T divides p*(p-1) if the characteristic polynomial of T splits over Z(p) and p^2-1 if it doesn't; moreover, if T is the companion matrix of the minimal polynomial of a primitive element of GF(p^2), the order is p^2-1.
a(p^k) <= (p^2-1) p^(k-1).
If m and n are coprime, a(m*n) <= a(m)*a(n). (End)