A316566 Triangle read by rows: T(n,k) is the number of elements of the group GL(2, Z(n)) with order k, 1 <= k <= A316565(n).
1, 1, 3, 2, 1, 13, 8, 6, 0, 8, 0, 12, 1, 27, 8, 36, 0, 24, 1, 31, 20, 152, 24, 20, 0, 40, 0, 24, 0, 40, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 80, 1, 55, 26, 24, 0, 98, 0, 48, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 1, 57, 170, 42, 0, 618, 48, 84, 0, 0, 0, 84
Offset: 1
Examples
Triangle begins: 1 1, 3, 2 1, 13, 8, 6, 0, 8, 0, 12 1, 27, 8, 36, 0, 24 1, 31, 20, 152, 24, 20, 0, 40, 0, 24, 0, 40, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 80 1, 55, 26, 24, 0, 98, 0, 48, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24 ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..8660 (first 40 rows)
Programs
-
PARI
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k} row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, my(t=MatOrder(M)); while(#L
Formula
T(p*q,k) = Sum_{i>0, j>0, k=lcm(i, j)} T(p, i)*T(q, j) for gcd(p, q)=1.
T(n,k) = Sum_{d|k} mu(d/k) * A316584(n,k).
Comments