A316604 Replacing each digit d in decimal expansion of n with d^2 yields a new prime when done recursively three times.
11, 101, 131, 133, 1013, 2111, 2619, 3173, 3301, 4111, 5907, 8463, 9101, 10033, 10111, 12881, 13833, 14021, 14821, 15443, 16771, 17501, 17831, 18621, 21519, 21567, 28609, 29309, 31133, 31233, 33131, 41621, 42621, 44181, 44421, 44669, 45921, 52707, 55847, 59023
Offset: 1
Examples
2619 is a term because replacing each digit d by d^2, recursively three times, a prime number is obtained: 2619 -> 436181 (prime); 436181 -> 169361641 (prime); 169361641 -> 13681936136161 (prime). 3173 is a term because replacing each digit d by d^2, recursively three times, a prime number is obtained: 3173 -> 91499 (prime); 91499 -> 811168181 (prime); 811168181 -> 6411136641641 (prime).
Programs
-
Mathematica
A316604 = {}; Do[ a=FromDigits[Flatten[IntegerDigits /@ (IntegerDigits[n]^2)]]; b=FromDigits[Flatten[IntegerDigits /@ (IntegerDigits[a]^2)]]; c=FromDigits[Flatten[IntegerDigits /@ (IntegerDigits[b]^2)]]; If[PrimeQ[a] && PrimeQ[b] && PrimeQ[c], AppendTo[A316604,n]], {n,100000}]; A316604
-
PARI
replace_digits(n) = my(d=digits(n), s=""); for(k=1, #d, s=concat(s, d[k]^2)); eval(s) is(n) = my(x=n, i=0); while(1, x=replace_digits(x); if(!ispseudoprime(x), return(0), i++); if(i==3, return(1))) \\ Felix Fröhlich, Jul 08 2018