A316623 Array read by antidiagonals: T(n,k) is the order of the group SL(n,Z_k).
1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 24, 168, 1, 1, 1, 48, 5616, 20160, 1, 1, 1, 120, 43008, 12130560, 9999360, 1, 1, 1, 144, 372000, 660602880, 237783237120, 20158709760, 1, 1, 1, 336, 943488, 29016000000, 167761422581760, 42064805779476480, 163849992929280, 1
Offset: 0
Examples
Array begins: ============================================================== n\k| 1 2 3 4 5 6 ---+---------------------------------------------------------- 0 | 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 ... 2 | 1 6 24 48 120 144 ... 3 | 1 168 5616 43008 372000 943488 ... 4 | 1 20160 12130560 660602880 29016000000 244552089600 ... 5 | 1 9999360 ... ...
Links
- R. P. Brent and B. D. McKay, Determinants and ranks of random matrices over Zm, Discrete Mathematics 66 (1987) pp. 35-49.
- J. M. Lockhart and W. P. Wardlaw, Determinants of Matrices over the Integers Modulo m, Mathematics Magazine, Vol. 80, No. 3 (Jun., 2007), pp. 207-214.
- The Group Properties Wiki, Order formulas for linear groups
Crossrefs
Programs
-
GAP
T:=function(n,k) if k=1 or n=0 then return 1; else return Order(SL(n, Integers mod k)); fi; end; for n in [0..5] do Print(List([1..6], k->T(n,k)), "\n"); od;
-
Mathematica
T[n_, k_] := If[k == 1 || n == 0, 1, k^(n^2-1) Product[1 - p^-j, {p, FactorInteger[k][[All, 1]]}, {j, 2, n}]]; Table[T[n-k+1, k], {n, 0, 8}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Sep 19 2019 *)
-
PARI
T(n,k)={my(f=factor(k)); if(n<1, n==0, k^(n^2-1) * prod(i=1, #f~, my(p=f[i,1]); prod(j=2, n, (1 - p^(-j)))))}
Formula
T(n,p^e) = (p^e)^(n^2-1) * Product_{j=2..n} (1 - 1/p^j) for prime p, n > 0.
Comments