cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002884 Number of nonsingular n X n matrices over GF(2) (order of the group GL(n,2)); order of Chevalley group A_n (2); order of projective special linear group PSL_n(2).

Original entry on oeis.org

1, 1, 6, 168, 20160, 9999360, 20158709760, 163849992929280, 5348063769211699200, 699612310033197642547200, 366440137299948128422802227200, 768105432118265670534631586896281600, 6441762292785762141878919881400879415296000, 216123289355092695876117433338079655078664339456000
Offset: 0

Views

Author

Keywords

Comments

Also number of bases for GF(2^n) over GF(2).
Also (apparently) number of n X n matrices over GF(2) having permanent = 1. - Hugo Pfoertner, Nov 14 2003
The previous comment is true because over GF(2) permanents and determinants are the same. - Joerg Arndt, Mar 07 2008
The number of automorphisms of (Z_2)^n (the direct product of n copies of Z_2). - Peter Eastwood, Apr 06 2015
Note that n! divides a(n) since the subgroup of GL(n,2) consisting of all permutation matrices is isomorphic to S_n (the n-th symmetric group). - Jianing Song, Oct 29 2022
The number of boolean operations on n bits, or quantum operations on n qubits, that can be constructed using only CNOT (controlled NOT) gates. - David Radcliffe, Jul 06 2025

Examples

			PSL_2(2) is isomorphic to the symmetric group S_3 of order 6.
		

References

  • Roger W. Carter, Simple groups of Lie type. Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. viii+331pp. MR0407163 (53 #10946). See page 2.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
  • K. J. Horadam, Hadamard matrices and their applications. Princeton University Press, Princeton, NJ, 2007. xiv+263 pp. See p. 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A316622 and A316623.
Cf. A006516, A048651, A203303. Row sums of A381854.

Programs

  • Magma
    [1] cat [(&*[2^n -2^k: k in [0..n-1]]): n in [1..15]]; // G. C. Greubel, Aug 31 2023
    
  • Maple
    # First program
    A002884:= n-> mul(2^n - 2^i, i=0..n-1);
    seq(A002884(n), n = 0..12);
    # Second program
    A002884:= n-> 2^(n*(n-1)/2) * mul( 2^i - 1, i=1..n);
    seq(A002884(n), n=0..12);
  • Mathematica
    Table[Product[2^n-2^i,{i,0,n-1}],{n,0,13}] (* Harvey P. Dale, Aug 07 2011 *)
    Table[2^(n*(n-1)/2) QPochhammer[2, 2, n] // Abs, {n, 0, 11}] (* Jean-François Alcover, Jul 15 2017 *)
  • PARI
    a(n)=prod(i=2,n,2^i-1)<Charles R Greathouse IV, Jan 13 2012
    
  • SageMath
    [product(2^n -2^j for j in range(n)) for n in range(16)] # G. C. Greubel, Aug 31 2023

Formula

a(n) = Product_{i=0..n-1} (2^n-2^i).
a(n) = 2^(n*(n-1)/2) * Product_{i=1..n} (2^i - 1).
a(n) = A203303(n+1)/A203303(n). - R. J. Mathar, Jan 06 2012
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)) for n > 2. - Seiichi Manyama, Oct 20 2016
a(n) ~ A048651 * 2^(n^2). - Vaclav Kotesovec, May 19 2020
a(n) = A006125(n) * A005329(n). - John Keith, Jun 30 2021
a(n) = Product_{k=1..n} A006516(k). - Amiram Eldar, Jul 06 2025

A000056 Order of the group SL(2,Z_n).

Original entry on oeis.org

1, 6, 24, 48, 120, 144, 336, 384, 648, 720, 1320, 1152, 2184, 2016, 2880, 3072, 4896, 3888, 6840, 5760, 8064, 7920, 12144, 9216, 15000, 13104, 17496, 16128, 24360, 17280, 29760, 24576, 31680, 29376, 40320, 31104, 50616, 41040, 52416, 46080, 68880, 48384, 79464
Offset: 1

Views

Author

Keywords

Comments

The number of equivalence classes of matrices modulo n of integer matrices with determinant 1 modulo n. - Michael Somos, Mar 20 2004
24 | a(n) if n > 2. - Michael Somos, Nov 15 2011
A divisibility sequence, that is, a(n) divides a(n*m) for all positive integers n and m. - Michael Somos, Jan 01 2017
The group SL(2,Z_2) is isomorphic to the symmetric group S_3. - Bernard Schott, Mar 15 2020
a(n) = [SL_2(Z) : Gamma(n)], index of the principal congruence subgroup of the special linear group over integers. - Andrey Zabolotskiy, Feb 14 2025

Examples

			G.f. = x + 6*x^2 + 24*x^3 + 48*x^4 + 120*x^5 + 144*x^6 + 336*x^7 +384*x^8 + ...
a(2) = 6 because [0, 1; 1, 0], [0, 1; 1, 1], [1, 0; 0, 1], [1, 0; 1, 1], [1, 1; 0, 1], [1, 1; 1, 0] are the six matrices modulo 2 with determinant 1 modulo 2.
		

References

  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 46.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 75.

Crossrefs

Cf. A001766.
Row n=2 of A316623.
Row sums of A316564.
Cf. A000252 (GL(2,Z_n)), A064767 (GL(3,Z_n)), A305186 (GL(4,Z_n)).
Cf. A011785 (SL(3,Z_n)), A011786 (SL(4,Z_n)).
Cf. A007434 ([SL_2(Z) : Gamma_1(n)]), A001615 ([SL_2(Z) : Gamma_0(n)]).

Programs

  • Maple
    proc(n) local b,d: b := n^3: for d from 1 to n do if irem(n,d) = 0 and isprime(d) then b := b*(1-d^(-2)): fi: od: RETURN(b): end:
  • Mathematica
    (* From Olivier Gérard, Aug 15 1997: (Start) *)
    Table[ Fold[ If[ Mod[ n, #2 ]==0 && PrimeQ[ #2 ], #1*(1-1/#2^2), #1 ]&, n^3, Range[ n ] ], {n, 1, 35} ]
    Table[ n^3 Times@@(1-1/Select[ Range[ 1, n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]^2), {n, 1, 35} ]  (* End *)
    a[ n_] := If[ n<1, 0, n Sum[ d^2 MoebiusMu[ n/d ], {d, Divisors @ n}]]; (* Michael Somos, Nov 15 2011 *)
    Table[ n DirichletConvolve[ MoebiusMu[m], m^2, m, n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
    a[n_] := #.RotateLeft[#] & @ Sort[Mod[ Outer[Times, Range[n], Range[n]], n] // Flatten // Tally][[;; , 2]]
    Table[a[n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv(n, d, d^2 * moebius(n / d)))}; /* Michael Somos, Mar 05 2008 */
    
  • Python
    from math import prod
    from sympy import factorint
    def A000056(n): return prod((p+1)*(p-1)*p**(3*e-2) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025

Formula

Multiplicative with a(p^e) = (p^2 - 1)*p^(3e-2). - David W. Wilson, Aug 01 2001
a(n) = A000252(n)/phi(n), where phi is Euler totient function (cf. A000010). - Vladeta Jovovic, Oct 30 2001
a(n) = n*Sum_{d|n} d^2*mu(n/d) = n*A007434(n) where A007434 is the Jordan function J_2(n). - Benoit Cloitre, May 03 2003
a(n) = A007434(n^2)/n. - Enrique Pérez Herrero, Sep 14 2010
a(n) = A007434(n^3)/n^3. - Enrique Pérez Herrero, Dec 19 2010
Dirichlet g.f. zeta(s-3)/zeta(s-1). - R. J. Mathar, Feb 27 2011
A046970(n) divides a(n). - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ n^4 / (4*Zeta(3)). - Vaclav Kotesovec, Jan 30 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2 / ((p-1)^2 * (p+1) * (p^2 + p + 1))) = 1.258448350408311046314826069717731136828991478925039589864338603650639811... - Vaclav Kotesovec, Sep 19 2020

Extensions

More terms from Vaclav Kotesovec, Sep 19 2020

A316622 Array read by antidiagonals: T(n,k) is the order of the group GL(n,Z_k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 2, 48, 168, 1, 1, 4, 96, 11232, 20160, 1, 1, 2, 480, 86016, 24261120, 9999360, 1, 1, 6, 288, 1488000, 1321205760, 475566474240, 20158709760, 1, 1, 4, 2016, 1886976, 116064000000, 335522845163520, 84129611558952960, 163849992929280, 1
Offset: 0

Views

Author

Andrew Howroyd, Jul 08 2018

Keywords

Comments

All rows are multiplicative.
Equivalently, the number of invertible n X n matrices mod k.
Also, for k prime (but not higher prime powers) the number of nonsingular n X n matrices over GF(k).
For k >= 2, n! divides T(n,k) since the subgroup of GL(n,k) consisting of all permutation matrices is isomorphic to S_n (the n-th symmetric group). Note that a permutation matrix is an orthogonal matrix, hence having determinant +-1. - Jianing Song, Oct 29 2022

Examples

			Array begins:
=================================================================
n\k| 1       2         3          4             5           6
---+-------------------------------------------------------------
0  | 1       1         1          1            1            1 ...
1  | 1       1         2          2            4            2 ...
2  | 1       6        48         96          480          288 ...
3  | 1     168     11232      86016      1488000      1886976 ...
4  | 1   20160  24261120 1321205760 116064000000 489104179200 ...
5  | 1 9999360  ...
...
		

Crossrefs

Rows n=2..4 are A000252, A064767, A305186.
Columns k=2..7 are A002884, A053290, A065128, A053292, A065498, A053293.
Cf. A053291 (GF(4)), A052496 (GF(8)), A052497 (GF(9)).
Cf. A316623.

Programs

  • GAP
    T:=function(n,k) if k=1 or n=0 then return 1; else return Order(GL(n, Integers mod k)); fi; end;
    for n in [0..5] do Print(List([1..6], k->T(n,k)), "\n"); od;
    
  • Mathematica
    T[, 1] = T[0, ] = 1; T[n_, k_] := T[n, k] = Module[{f = FactorInteger[k], p, e}, If[Length[f] == 1, {p, e} = f[[1]]; (p^e)^(n^2)* Product[(1 - 1/p^j), {j, 1, n}], Times @@ (T[n, Power @@ #]& /@ f)]];
    Table[T[n - k + 1, k], {n, 0, 8}, {k, n + 1, 1, -1}] // Flatten (* Jean-François Alcover, Jul 25 2019 *)
  • PARI
    T(n,k)={my(f=factor(k)); k^(n^2) * prod(i=1, #f~, my(p=f[i,1]); prod(j=1, n, (1 - p^(-j))))}

Formula

T(n,p^e) = (p^e)^(n^2) * Product_{j=1..n} (1 - 1/p^j) for prime p.
Showing 1-3 of 3 results.