A316625 Terms in A259663, in ascending order.
1, 3, 5, 7, 11, 13, 15, 19, 21, 23, 31, 35, 47, 53, 55, 63, 79, 85, 87, 95, 99, 127, 143, 151, 191, 213, 223, 227, 255, 271, 319, 341, 351, 383, 407, 483, 511, 575, 663, 739, 767, 783, 853, 863, 895, 1023, 1175, 1251, 1279, 1365, 1407, 1535, 1599, 1807, 1887, 2047
Offset: 1
Keywords
Examples
k=5, i=1 -- terms are least residues of 3^j*2^(12-j)-1 mod 2^(17-j), 0 <= j < 12: j=0: 4096-1 mod 131072 = 4095; j=1: 3*2048-1 mod 65536 = 6143; j=2: 9*1024-1 mod 32768 = 9215; j=3: 27*512-1 mod 16384 = 13823; j=4: 81*256-1 mod 8192 = 20735 mod 8192 == 4351; j=5: 243*128-1 mod 4096 = 31103 mod 4096 == 2431; j=6: 729*64-1 mod 2048 = 46655 mod 2048 == 1599; j=7: 2187*32-1 mod 1024 = 69983 mod 1024 == 351; j=8: 6561*16-1 mod 512 = 104975 mod 512 == 15; j=9: 19683*8-1 mod 256 = 157463 mod 256 == 23; j=10: 59049*4-1 mod 128 = 236195 mod 128 == 35; j=11: 177147*2-1 mod 64 = 354293 mod 64 == 53. Note: k=5, i=0 is equivalent to starting with j=0: 15 mod 512.
Crossrefs
Cf. A259663.
Extensions
More terms from Michel Marcus, Jul 10 2018
Comments