A316649 Triangle read by rows in which T(n,k) is the number of length k chains from (0,0) to (n,n) of the poset [n] X [n] ordered by the product order, 0 <= k <= 2n, n>=0.
1, 0, 1, 2, 0, 1, 7, 12, 6, 0, 1, 14, 55, 92, 70, 20, 0, 1, 23, 153, 471, 780, 720, 350, 70, 0, 1, 34, 336, 1584, 4251, 7002, 7238, 4592, 1638, 252, 0, 1, 47, 640, 4210, 16175, 39733, 65226, 72660, 54390, 26250, 7392, 924, 0, 1, 62, 1107, 9596, 49225, 164898, 380731, 623576, 732618, 614700, 360162, 140184, 32604, 3432
Offset: 0
Examples
Triangle begins: 1; 0, 1, 2; 0, 1, 7, 12, 6; 0, 1, 14, 55, 92, 70, 20; 0, 1, 23, 153, 471, 780, 720, 350, 70; 0, 1, 34, 336, 1584, 4251, 7002, 7238, 4592, 1638, 252; ...
Links
- Alois P. Heinz, Rows n = 0..100, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, m) option remember; expand(`if`(n+m=0, 1, add(add( `if`(i+j=0, 0, b(sort([n-i, m-j])[])*x), j=0..m), i=0..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..8); # Alois P. Heinz, Jul 10 2018
-
Mathematica
Join[{{1}},Table[a =Sort[Level[Table[Table[{i, j}, {i, 0, n}], {j, 0, n}], {2}]];f[list1_, list2_] :=Boole[(list1 - list2)[[1]] < 1 \[And] (list1 - list2)[[2]] < 1];m = Table[Table[f[a[[l]], a[[k]]], {k, 1, Length[a]}], {l, 1, Length[a]}];Prepend[Table[ MatrixPower[m - IdentityMatrix[(n + 1)^2], k][[1, (n + 1)^2]], {k, 1, 2 n}], 0], {n, 1, 7}]] // Grid