A316679 The integer 907 and its infinite growing pattern (when iterating the rule explained in A316650 and hereunder, in the Comment section).
907, 5611, 4318, 26914, 12238, 76414, 34738, 138913, 555613, 2222413, 13890013, 55560013, 222240013, 1389000013, 5556000013, 22224000013, 138900000013, 555600000013, 2222400000013, 13890000000013, 55560000000013, 222240000000013, 1389000000000013, 5556000000000013, 22224000000000013
Offset: 1
Examples
907/16 gives 56 with remainder 11; 5611/13 gives 431 with remainder 8; 4318/16 gives 269 with remainder 14; 26914/22 gives 122 with remainder 38; . . . Now from 2222413 on, starts a devilish 0-inflation "from the middle" in a ternary cycle: 2222413 13890013 55560013 222240013 1389000013 5556000013 22224000013 138900000013 555600000013 2222400000013 13890000000013 55560000000013 222240000000013 1389000000000013 5556000000000013 22224000000000013 138900000000000013 555600000000000013 2222400000000000013 . . . We have: 1389(k zeros)13 5556(k zeros)13 22224(k zeros)13 then: 1389(k+2 zeros)13 5556(k+2 zeros)13 22224(k+2 zeros)13 then: 1389(k+4 zeros)13 5556(k+4 zeros)13 22224(k+4 zeros)13 Etc.
Crossrefs
Programs
-
Mathematica
NestList[FromDigits@ Flatten[IntegerDigits@ # & /@ QuotientRemainder[#, Total[IntegerDigits@ #]]] &, 907, 24] (* Michael De Vlieger, Jul 10 2018 *)
Comments