A316651 Number of series-reduced rooted trees with n leaves spanning an initial interval of positive integers.
1, 2, 12, 112, 1444, 24086, 492284, 11910790, 332827136, 10546558146, 373661603588, 14636326974270, 628032444609396, 29296137817622902, 1476092246351259964, 79889766016415899270, 4622371378514020301740, 284719443038735430679268, 18601385258191195218790756
Offset: 1
Keywords
Examples
The a(3) = 12 trees: (1(11)), (111), (1(12)), (2(11)), (112), (1(22)), (2(12)), (122), (1(23)), (2(13)), (3(12)), (123).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i))) end: A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)): a:= n-> add(add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1), k=1..n): seq(a(n), n=1..20); # Alois P. Heinz, Sep 18 2018
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]]; allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}] (* Second program: *) b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j] b[n - i*j, i - 1, k], {j, 0, n/i}]]]; A[n_, k_] := If[n < 2, n*k, b[n, n - 1, k]]; a[n_] := Sum[Sum[A[n, k-j]*(-1)^j*Binomial[k, j], {j, 0, k-1}], {k, 1, n}]; Array[a, 20] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
-
PARI
\\ here R(n,k) is A000669, A050381, A220823, ... EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} R(n,k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v,[0]))[n])); v} seq(n)={sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018
Formula
From Vaclav Kotesovec, Sep 18 2019: (Start)
a(n) ~ c * d^n * n^(n-1), where d = 1.37392076830840090205551979... and c = 0.41435722857311602982846...
a(n) ~ 2*log(2)*A326396(n)/n. (End)
Extensions
Terms a(9) and beyond from Andrew Howroyd, Sep 14 2018
Comments