A316674 Number A(n,k) of paths from {0}^k to {n}^k that always move closer to {n}^k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 13, 26, 4, 1, 1, 75, 818, 252, 8, 1, 1, 541, 47834, 64324, 2568, 16, 1, 1, 4683, 4488722, 42725052, 5592968, 26928, 32, 1, 1, 47293, 617364026, 58555826884, 44418808968, 515092048, 287648, 64, 1
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 13, 75, 541, ... 1, 2, 26, 818, 47834, 4488722, ... 1, 4, 252, 64324, 42725052, 58555826884, ... 1, 8, 2568, 5592968, 44418808968, 936239675880968, ... 1, 16, 26928, 515092048, 50363651248560, 16811849850663255376, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..48, flattened
Crossrefs
Programs
-
Maple
A:= (n, k)-> `if`(k=0, 1, ceil(2^(n-1))*add(add((-1)^i* binomial(j, i)*binomial(j-i, n)^k, i=0..j), j=0..k*n)): seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
A[n_, k_] := Sum[If[k == 0, 1, Binomial[j+n-1, n]^k] Sum[(-1)^(i-j)* Binomial[i, j], {i, j, n k}], {j, 0, n k}]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Nov 04 2021 *)
-
PARI
T(n,k)={my(m=n*k); sum(j=0, m, binomial(j+n-1,n)^k*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))} \\ Andrew Howroyd, Jan 23 2020
Formula
A(n,k) = Sum_{j=0..n*k} binomial(j+n-1,n)^k * Sum_{i=j..n*k} (-1)^(i-j) * binomial(i,j). - Andrew Howroyd, Jan 23 2020
Comments