cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316742 Stepping through the Mersenne sequence (A000225) one step back, two steps forward.

Original entry on oeis.org

1, 0, 3, 1, 7, 3, 15, 7, 31, 15, 63, 31, 127, 63, 255, 127, 511, 255, 1023, 511, 2047, 1023, 4095, 2047, 8191, 4095, 16383, 8191, 32767, 16383, 65535, 32767, 131071, 65535, 262143, 131071, 524287, 262143, 1048575, 524287, 2097151, 1048575, 4194303, 2097151, 8388607, 4194303
Offset: 0

Views

Author

Jim Singh, Jul 12 2018

Keywords

Examples

			Let 1. The first four terms are 1, (1-1)/2 = 0, 2*1+1 = 3, 1.
Let 4*1+3 = 7. The next four terms are 7, (7-1)/2 = 3, 2*7+1 = 15, 7.
Let 4*7+3 = 31. The next four terms are 31, (31-1)/2 = 15, 2*31+1 = 63, 31; etc.
		

Crossrefs

Programs

  • GAP
    a:=[1,0,3];; for n in [4..45] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]; od; a; # Muniru A Asiru, Jul 14 2018
  • Maple
    seq(coeff(series((1-x+x^2)/((1-x)*(1-2*x^2)), x,n+1),x,n),n=0..45); # Muniru A Asiru, Jul 14 2018
  • Mathematica
    CoefficientList[Series[(1 - x + x^2)/((1 - x) (1 - 2 x^2)), {x, 0, 42}], x] (* Michael De Vlieger, Jul 13 2018 *)
    LinearRecurrence[{1, 2, -2}, {1, 0, 3}, 46] (* Robert G. Wilson v, Jul 21 2018 *)

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) for n>2, a(0)=1, a(1)=0, a(2)=3.
From Bruno Berselli, Jul 12 2018: (Start)
G.f.: (1 - x + x^2)/((1 - x)*(1 - 2*x^2)).
a(n) = 2*a(n-2) + 1 for n>1, a(0)=1, a(1)=0.
a(n) = (1 + (-1)^n)*(2^(n/2) - 2^((n-3)/2)) + 2^((n-1)/2) - 1.
Therefore: a(4*k) = 2*4^k - 1, a(4*k+1) = 4^k - 1, a(4*k+2) = 4^(k+1) - 1, a(4*k+3) = 2*4^k - 1. (End)