cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316795 Number of aperiodic rooted trees on n nodes with locally distinct multiplicities.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 8, 17, 30, 55, 101, 194, 352, 663, 1227, 2275, 4225, 7877, 14600, 27158, 50414, 93666, 173972, 323286, 600353, 1115407, 2071843, 3848794, 7149196, 13280874, 24669606, 45827047, 85126845, 158131764, 293742200, 545655290, 1013598733
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

An aperiodic rooted tree is an unlabeled rooted tree in which the multiplicities of branches under any given node are relatively prime. A rooted tree has locally distinct multiplicities if the multiset of branches under any given node has all distinct multiplicities.

Examples

			The a(7) = 8 trees:
((((((o))))))
(((oo(o))))
((oo((o))))
((o(o)(o)))
((ooo(o)))
(oo(((o))))
(ooo((o)))
(oooo(o))
		

Crossrefs

Programs

  • Mathematica
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],And[UnsameQ@@Length/@Split[#],GCD@@Length/@Split[#]==1]&]];
    Table[Length[strut[n]],{n,15}]
  • PARI
    C(v,n)={my(recurse(r,b,g,p,k)=if(!r, g==1, sum(m=1, r, if(!bittest(b,m), sum(i=1, min(r\m, p), my(f=if(i==p, k+1, 1)); if(v[i]>=f, (v[i]-f+1)*self()(r-m*i, bitor(b, 1<Andrew Howroyd, Feb 08 2020

Extensions

Terms a(26) and beyond from Andrew Howroyd, Feb 08 2020