cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A316940 Smallest "anti-Carmichael pseudoprime" to base n.

Original entry on oeis.org

35, 7957, 16531, 1247, 17767, 35, 817, 2501, 697, 4141, 2257, 143, 9577, 2257, 4187, 1247, 3991, 221, 7957, 2059, 55, 161, 1027, 115, 403, 475, 247, 4553, 35, 247, 6289, 697, 1853, 35, 1247, 35, 589, 221, 95, 533, 35, 559, 77, 215, 253, 235, 221, 329, 247, 119
Offset: 1

Views

Author

Thomas Ordowski, Jul 17 2018

Keywords

Comments

a(n) is the smallest k such that n^(k-1) == 1 (mod k) and p-1 does not divide k-1 for every prime p dividing k.
All listed terms are semiprime and squarefree, except a(26) = 475 = 5^2*19.

Crossrefs

Cf. A121707 (probably "anti-Carmichael numbers": n such that p-1 does not divide n-1 for every prime p dividing n).
Cf. A316907 ("anti-Carmichael pseudoprimes" to base 2).

Programs

  • Mathematica
    Table[Block[{k = 2}, While[Nand[PowerMod[n, k - 1, k] == 1, AllTrue[FactorInteger[k][[All, 1]] - 1, Mod[k - 1, #] != 0 &]], k++]; k], {n, 50}] (* Michael De Vlieger, Jul 20 2018 *)
  • PARI
    isok(k, n) = {if (!isprime(k) && Mod(n, k)^(k-1) == 1, f = factor(k)[,1]; for (j=1, #f~, if (!((k-1) % (f[j]-1)), return (0));); return (1);); return (0);}
    a(n) = {my(k=2); while(!isok(k, n), k++); k;} \\ Michel Marcus, Jul 17 2018

Extensions

More terms from Michel Marcus, Jul 17 2018

A300762 Numbers k > 1 such that 2^k == 2 (mod k) and gcd(k, 3^k - 3) = 1.

Original entry on oeis.org

35333, 42799, 49981, 60787, 150851, 162193, 164737, 241001, 253241, 256999, 280601, 452051, 481573, 556169, 617093, 665333, 722201, 838861, 1016801, 1252697, 1507963, 1534541, 1678541, 1826203, 2134277, 2269093, 2304167, 2313697, 2537641, 2617451, 2811271
Offset: 1

Views

Author

Thomas Ordowski, Aug 15 2018

Keywords

Comments

Numbers k > 1 such that 2^(k-1) == 1 (mod k) and gcd(k, 3^(k-1)-1) = 1.
Are there infinitely many such "anti-Carmichael pseudoprimes (2,3)"?

Crossrefs

Subsequence of A001567 and of A316907 and probably of A121707.

Programs

  • Mathematica
    Select[Range[2 10^6], PowerMod[2, #, #] == 2 && GCD[#, # + PowerMod[3, #, #] - 3] == 1 &] (* Giovanni Resta, Aug 18 2018 *)
  • PARI
    isok(k) = (k != 1) && (Mod(2, k)^k == Mod(2, k)) && (gcd(k, 3^k - 3) == 1); \\ Michel Marcus, Aug 15 2018

Extensions

More terms from Michel Marcus, Aug 15 2018
More terms from Giovanni Resta, Aug 18 2018

A316908 a(n) is the smallest k with n prime factors such that 2^(k-1) == 1 (mod k) and p-1 does not divide k-1 for every prime p dividing k.

Original entry on oeis.org

7957, 617093, 134564501, 384266404601, 8748670222601, 6105991025919737, 901196605940857381
Offset: 2

Views

Author

Thomas Ordowski, Jul 16 2018

Keywords

Comments

Conjecture: a(n) > A006931(n) for every n > 2.
a(6)-a(8) derived from Feitsma's tables of pseudoprimes. a(9) > 2^64. - Giovanni Resta, Jul 19 2018
From Daniel Suteu, Jun 08 2020: (Start)
a(9) <= 521957994426556057126261,
a(10) <= 1315856103949347820015303981,
a(11) <= 6357507186189933506573017225316941,
a(12) <= 77822245466150976053960303855104674781. (End)

Crossrefs

Extensions

More terms from Michel Marcus, Jul 16 2018
a(6)-a(8) from Giovanni Resta, Jul 19 2018
Showing 1-3 of 3 results.