cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316937 a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) for n > 2, a(0)=3, a(1)=10, a(2)=26.

Original entry on oeis.org

3, 10, 26, 62, 140, 306, 654, 1376, 2862, 5902, 12092, 24650, 50054, 101328, 204630, 412454, 830076, 1668514, 3350558, 6723008, 13481438, 27020190, 54133116, 108416282, 217075350, 434543536, 869722694, 1740473846, 3482611772, 6967916082, 13940188782, 27887426720
Offset: 0

Views

Author

Vincenzo Librandi, Jul 17 2018

Keywords

Comments

Row sums of triangle A316938.

Crossrefs

Programs

  • GAP
    List([0..35],n->13*2^n-2*Fibonacci(n+5)); # Muniru A Asiru, Jul 22 2018
    
  • Magma
    I:=[3, 10, 26]; [n le 3 select I[n] else 3*Self(n-1)-Self(n-2)-2*Self(n-3): n in [1..40]];
    
  • Magma
    [((2^(-n)*(65*4^n + (1-Sqrt(5))^n*(-25 + 11*Sqrt(5)) - (1 + Sqrt(5))^n*(25 + 11*Sqrt(5)))) / 5): n in [0..20]]; // Vincenzo Librandi, Aug 24 2018
  • Maple
    seq(coeff(series((3+x-x^2)/((1-2*x)*(1-x-x^2)), x,n+1),x,n),n=0..35); # Muniru A Asiru, Jul 22 2018
  • Mathematica
    CoefficientList[Series[(3 + x - x^2) / ((1 - 2 x) (1 - x - x^2)), {x, 0, 33}], x] (* or *) RecurrenceTable[{a[n]==3 a[n-1] - a[n-2] - 2 a[n-3], a[0]==3, a[1]==10, a[2]==26}, a, {n, 0, 40}]
    f[n_] := 13*2^n - 2 Fibonacci[n + 5]; Array[f, 32, 0] (* or *)
    LinearRecurrence[{3, -1, -2}, {3, 10, 26}, 32] (* Robert G. Wilson v, Jul 21 2018 *)
  • PARI
    Vec((3 + x - x^2) / ((1 - 2*x)*(1 - x - x^2)) + O(x^40)) \\ Colin Barker, Jul 22 2018
    

Formula

G.f.: (3 + x - x^2) / ((1 - 2*x)*(1 - x - x^2)).
a(n) = 13*2^n - 2*Fibonacci(n+5) for n>0.
a(n) = (2^(-n)*(65*4^n + (1-sqrt(5))^n*(-25+11*sqrt(5)) - (1+sqrt(5))^n*(25+11*sqrt(5)))) / 5. - Colin Barker, Jul 22 2018