cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306336 Expansion of e.g.f. sec(log(1 + x)) + tan(log(1 + x)).

Original entry on oeis.org

1, 1, 0, 1, -2, 10, -50, 320, -2340, 19640, -184900, 1932500, -22187200, 277576000, -3757884000, 54732418000, -853278998000, 14176686784000, -250046057846000, 4665989766386000, -91838330641200000, 1901405069222360000, -41307212202493120000, 939523370329035440000, -22327292561388519640000
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2019

Keywords

Crossrefs

Programs

  • Maple
    a:=series(sec(log(1 + x)) + tan(log(1 + x)),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 24; CoefficientList[Series[Sec[Log[1 + x]] + Tan[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
    e[n_] := e[n] = (2 I)^n If[EvenQ[n], EulerE[n, 1/2], EulerE[n, 0] I]; a[n_] := a[n] = Sum[StirlingS1[n, k] e[k], {k, 0, n}]; Table[a[n], {n, 0, 24}]
  • Python
    from itertools import accumulate
    from sympy.functions.combinatorial.numbers import stirling
    def A306336(n): # generator of terms
        if n == 0: return 1
        blist, c = (0,1), 0
        for k in range(1,n+1):
            c += stirling(n,k,kind=1,signed=True)*blist[-1]
            blist = tuple(accumulate(reversed(blist),initial=0))
        return c # Chai Wah Wu, Apr 18 2023

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k)*A000111(k).
a(n) ~ -2*(-1)^n * n! * exp(3*Pi*n/2) / (exp(3*Pi/2) - 1)^(n+1). - Vaclav Kotesovec, Feb 09 2019

A335788 Expansion of e.g.f. 2*sec(exp(x)-1) - 2*tan(exp(x)-1) - exp(x).

Original entry on oeis.org

1, 1, 3, 11, 49, 263, 1675, 12417, 105183, 1002475, 10616589, 123679907, 1571831251, 21640964933, 320872742611, 5097445680435, 86377624918593, 1555173730665199, 29646960589439139, 596571563234557361, 12636340495630310359
Offset: 0

Views

Author

Geoffrey Critzer, Jun 23 2020

Keywords

Comments

a(n) is the number of ways to partition {1,2,...,n} into any number of blocks, then order the blocks so that the set of least elements of the blocks is an alternating permutation.

Crossrefs

Programs

  • Mathematica
    nn = 20; a[x_] := Tan[x] + Sec[x]; b[x_] := 2 a[x] - 1 - x;
    Range[0, nn]! CoefficientList[Series[b[Exp[x] - 1], {x, 0, nn}], x]
    (* Second program: *)
    Array[Abs[-1 + Sum[4 StirlingS2[#, k] Abs[PolyLog[-k, I]], {k, #}]] &, 21, 0] (* Michael De Vlieger, Aug 02 2021, after Jean-François Alcover at A001250 *)

Formula

a(n) = Sum_{k=1..n} Stirling2(n,k)*A001250(k).
E.g.f.: B(exp(x)-1) where B(x) = 2(tan(x) + sec(x))-1-x.
a(n) ~ 8 * n! / ((Pi+2) * log(1 + Pi/2)^(n+1)). - Vaclav Kotesovec, Jun 24 2020
Showing 1-2 of 2 results.