cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317060 a(n) is the number of time-dependent assembly trees satisfying the edge gluing rule for a cycle on n vertices.

Original entry on oeis.org

1, 1, 3, 14, 85, 642, 5782, 60484, 720495, 9627210, 142583430, 2318126196, 41042117558, 786002475244, 16189215818220, 356847596226840, 8381418010559225, 208967274455769810, 5511890008010697306
Offset: 1

Views

Author

Keywords

Comments

A time-dependent assembly tree for a connected graph G=(V, E) on n vertices is a rooted tree, each node of which is label a subset U of V and a nonnegative integer i such that:
1) each internal node has at least two children,
2) there are leaves labeled (v, 0) for each vertex v in V,
3) the label on the root is (V, m) for 1 <= m <= n-1,
4) for each node (U, i) with i < m, U is the union of the {u} for the children (u, 0) of (U, i),
5) if (U, i) and (U', i') are adjacent nodes with U a subset of U', then i
6) for each 0 <= i <= m, there exists a node (U, i) with U a subset of V.
A time-dependent assembly tree is said to satisfy the edge gluing rule if each internal vertex v of G has exactly two children and if U_1 and U_2 are the labels of the children of internal vertex v, then there is an edge (v_1,v_2) in the edge set of G such that v_1 is in U_1 and v_2 is in U_2.

Crossrefs

Programs

  • Mathematica
    Nest[Function[{a, n}, Append[a, Sum[(Binomial[n - j, n - 2 j] + Binomial[n - j - 1, n - 2 j]) a[[n - j]], {j, Floor[n/2]}]]][#, Length@ # + 1] &, {1, 1}, 17] (* Michael De Vlieger, Jul 26 2018 *)
  • PARI
    lista(nn) = my(v = vector(nn)); for (n=1, nn, if (n<=2, v[n] = 1, v[n] = sum(j=1, n\2, (binomial(n-j, n-2*j)+binomial(n-j-1,n-2*j))*v[n-j]))); v; \\ Michel Marcus, Aug 08 2018
  • Sage
    @cached_function
    def TimeDepenEdgeCyc(n):
        if n==1:
            return 1
        elif n==2:
            return 1
        else:
            return sum((binomial(n-j,n-2*j)+binomial(n-j-1, n-2*j))*TimeDepenEdgeCyc(n-j) for j in range(1, (n//2)+1))
    print(','.join(str(TimeDepenEdgeCyc(i)) for i in range(1, 20)))
    

Formula

a(n) = Sum_{j=1..floor(n/2)}(binomial(n-j, n-2j)+binomial(n-j-1,n-2j))*a(n-j), a(1)=a(2)=1.