cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317077 Number of connected multiset partitions of normal multisets of size n.

Original entry on oeis.org

1, 1, 3, 8, 28, 110, 519, 2749, 16317, 106425, 755425, 5781956, 47384170, 413331955, 3818838624, 37213866876, 381108145231, 4088785729738, 45829237977692, 535340785268513, 6502943193997922, 81984445333355812, 1070848034863526547, 14467833457108560375, 201894571410270034773
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.

Examples

			The a(3) = 8 connected multiset partitions are (111), (1)(11), (1)(1)(1), (122), (2)(12), (112), (1)(12), (123).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Length/@Table[Join@@Table[Select[mps[m],Length[csm[#]]==1&],{m,allnorm[n]}],{n,8}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    Connected(v)={my(u=vector(#v));for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1,k)*v[k]*u[n-k]));u}
    seq(n)={my(u=vector(n, k, x*Ser(EulerT(vector(n,i,binomial(i+k-1,i)))))); Vec(1+vecsum(Connected(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*u[i])))))} \\ Andrew Howroyd, Jan 16 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 16 2023