A317081 Number of integer partitions of n whose multiplicities cover an initial interval of positive integers.
1, 1, 1, 2, 3, 5, 5, 9, 11, 16, 20, 30, 34, 50, 58, 79, 96, 129, 152, 203, 243, 307, 375, 474, 563, 707, 850, 1042, 1246, 1532, 1815, 2215, 2632, 3173, 3765, 4525, 5323, 6375, 7519, 8916, 10478, 12414, 14523, 17133, 20034, 23488, 27422, 32090, 37285, 43511, 50559
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 16 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (21) (31) (32) (42) (43) (53) (54) (211) (41) (51) (52) (62) (63) (221) (321) (61) (71) (72) (311) (411) (322) (332) (81) (331) (422) (432) (421) (431) (441) (511) (521) (522) (3211) (611) (531) (3221) (621) (4211) (711) (3321) (4221) (4311) (5211) (32211)
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..160
Crossrefs
The case with parts also covering an initial interval is A317088.
These partitions are ranked by A317090.
A047966 counts partitions with constant section-sums.
A055932 lists numbers whose prime indices cover an initial interval.
A116540 counts normal set multipartitions.
A381436 lists the section-sum partition of prime indices.
A381440 lists the Look-and-Say partition of prime indices.
Programs
-
Mathematica
normalQ[m_]:=Union[m]==Range[Max[m]]; Table[Length[Select[IntegerPartitions[n],normalQ[Length/@Split[#]]&]],{n,30}]
-
Python
from sympy.utilities.iterables import partitions def A317081(n): if n == 0: return 1 c = 0 for d in partitions(n): s = set(d.values()) if len(s) == max(s): c += 1 return c # Chai Wah Wu, Jun 22 2020
Comments