A317086 Number of normal integer partitions of n whose sequence of multiplicities is a palindrome.
1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 1, 4, 1, 4, 5, 4, 1, 7, 1, 8, 6, 6, 1, 10, 5, 7, 8, 11, 1, 20, 1, 9, 12, 9, 13, 25, 1, 10, 17, 21, 1, 37, 1, 21, 36, 12, 1, 44, 16, 23, 30, 33, 1, 53, 17, 55, 38, 15, 1, 103, 1, 16, 95, 51, 28, 69, 1, 73, 57, 82
Offset: 0
Examples
The a(20) = 8 partitions: (44432111), (44332211), (43332221), (3333221111), (3332222111), (3322222211), (3222222221), (11111111111111111111).
Links
- David A. Corneth, Table of n, a(n) for n = 0..9999 (first 215 terms from Chai Wah Wu)
- Wikipedia, Palindrome
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],And[Union[#]==Range[First[#]],Length/@Split[#]==Reverse[Length/@Split[#]]]&]],{n,30}]
-
Python
from sympy.utilities.iterables import partitions from sympy import integer_nthroot, isprime def A317086(n): if n > 3 and isprime(n): return 1 else: c = 1 for d in partitions(n,k=integer_nthroot(2*n,2)[0],m=n*2//3): l = len(d) if l > 0: k = max(d) if l == k: for i in range(k//2): if d[i+1] != d[k-i]: break else: c += 1 return c # Chai Wah Wu, Jun 22 2020
Comments