cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A227038 Number of (weakly) unimodal compositions of n where all parts 1, 2, ..., m appear where m is the largest part.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 13, 19, 30, 44, 71, 98, 147, 205, 294, 412, 575, 783, 1077, 1456, 1957, 2634, 3492, 4627, 6082, 7980, 10374, 13498, 17430, 22451, 28767, 36806, 46803, 59467, 75172, 94839, 119285, 149599, 187031, 233355, 290340, 360327, 446222, 551251, 679524, 835964, 1026210
Offset: 0

Views

Author

Joerg Arndt, Jun 28 2013

Keywords

Examples

			There are a(8) = 30 such compositions of 8:
01:  [ 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 2 ]
03:  [ 1 1 1 1 1 2 1 ]
04:  [ 1 1 1 1 2 1 1 ]
05:  [ 1 1 1 1 2 2 ]
06:  [ 1 1 1 2 1 1 1 ]
07:  [ 1 1 1 2 2 1 ]
08:  [ 1 1 1 2 3 ]
09:  [ 1 1 1 3 2 ]
10:  [ 1 1 2 1 1 1 1 ]
11:  [ 1 1 2 2 1 1 ]
12:  [ 1 1 2 2 2 ]
13:  [ 1 1 2 3 1 ]
14:  [ 1 1 3 2 1 ]
15:  [ 1 2 1 1 1 1 1 ]
16:  [ 1 2 2 1 1 1 ]
17:  [ 1 2 2 2 1 ]
18:  [ 1 2 2 3 ]
19:  [ 1 2 3 1 1 ]
20:  [ 1 2 3 2 ]
21:  [ 1 3 2 1 1 ]
22:  [ 1 3 2 2 ]
23:  [ 2 1 1 1 1 1 1 ]
24:  [ 2 2 1 1 1 1 ]
25:  [ 2 2 2 1 1 ]
26:  [ 2 2 3 1 ]
27:  [ 2 3 1 1 1 ]
28:  [ 2 3 2 1 ]
29:  [ 3 2 1 1 1 ]
30:  [ 3 2 2 1 ]
From _Gus Wiseman_, Mar 05 2020: (Start)
The a(1) = 1 through a(6) = 13 compositions:
  (1)  (11)  (12)   (112)   (122)    (123)
             (21)   (121)   (221)    (132)
             (111)  (211)   (1112)   (231)
                    (1111)  (1121)   (321)
                            (1211)   (1122)
                            (2111)   (1221)
                            (11111)  (2211)
                                     (11112)
                                     (11121)
                                     (11211)
                                     (12111)
                                     (21111)
                                     (111111)
(End)
		

Crossrefs

Cf. A001523 (unimodal compositions), A001522 (smooth unimodal compositions with first and last part 1), A001524 (unimodal compositions such that each up-step is by at most 1 and first part is 1).
Organizing by length rather than sum gives A007052.
The complement is counted by A332743.
The case of run-lengths of partitions is A332577, with complement A332579.
Compositions covering an initial interval are A107429.
Non-unimodal compositions are A115981.

Programs

  • Maple
    b:= proc(n,i) option remember;
          `if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+
          add(b(n-i*j, i+1)*(j+1), j=1..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i] == 0, 1, 0] + Sum[b[n-i*j, i+1]*(j+1), {j, 1, n/i}]]; a[n_] := If[n==0, 1, b[n, 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 09 2015, after Alois P. Heinz *)
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[#]&&unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 05 2020 *)

Formula

a(n) ~ c * exp(Pi*sqrt(r*n)) / n, where r = 0.9409240878664458093345791978063..., c = 0.05518035191234679423222212249... - Vaclav Kotesovec, Mar 04 2020
a(n) + A332743(n) = 2^(n - 1). - Gus Wiseman, Mar 05 2020

A332280 Number of integer partitions of n with unimodal run-lengths.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 97, 129, 166, 215, 273, 352, 439, 557, 692, 865, 1066, 1325, 1614, 1986, 2413, 2940, 3546, 4302, 5152, 6207, 7409, 8862, 10523, 12545, 14814, 17562, 20690, 24397, 28615, 33645, 39297, 46009, 53609, 62504, 72581, 84412
Offset: 0

Views

Author

Gus Wiseman, Feb 18 2020

Keywords

Comments

First differs from A000041 at a(10) = 41, A000041(10) = 42.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing followed by a weakly decreasing sequence.

Examples

			The a(10) = 41 partitions (A = 10) are:
  (A)     (61111)   (4321)     (3211111)
  (91)    (55)      (43111)    (31111111)
  (82)    (541)     (4222)     (22222)
  (811)   (532)     (42211)    (222211)
  (73)    (5311)    (421111)   (2221111)
  (721)   (5221)    (4111111)  (22111111)
  (7111)  (52111)   (3331)     (211111111)
  (64)    (511111)  (3322)     (1111111111)
  (631)   (442)     (331111)
  (622)   (4411)    (32221)
  (6211)  (433)     (322111)
Missing from this list is only (33211).
		

Crossrefs

The complement is counted by A332281.
Heinz numbers of these partitions are the complement of A332282.
Taking 0-appended first-differences instead of run-lengths gives A332283.
The normal case is A332577.
The opposite version is A332638.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Numbers whose unsorted prime signature is unimodal are A332288.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),
          j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))
        end:
    a:= n-> b(n$2, 0, true):
    seq(a(n), n=0..65);  # Alois P. Heinz, Feb 20 2020
  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];
    a[n_] := b[n, n, 0, True];
    a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A317245 Number of supernormal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 1, 3, 3, 4, 2, 4, 5, 6, 6, 10, 7, 10, 9, 9, 10, 11, 12, 12, 21, 12, 18, 17, 21, 19, 28, 23, 28, 26, 27, 24, 32, 29, 36, 34, 46, 42, 55, 48, 65, 65, 74, 70, 88, 81, 83, 103, 112, 129, 153, 157, 190, 205, 210, 242, 283, 276, 321
Offset: 0

Views

Author

Gus Wiseman, Jul 24 2018

Keywords

Comments

An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition.

Examples

			The a(10) = 4 supernormal integer partitions are (4321), (33211), (322111), (1111111111).
The a(21) = 10 supernormal integer partitions:
  (654321),
  (4443321),
  (44432211), (44333211), (44332221),
  (4432221111), (4333221111), (4332222111),
  (433322211),
  (111111111111111111111).
		

Crossrefs

Programs

  • Mathematica
    supnrm[q_]:=Or[q=={}||Union[q]=={1},And[Union[q]==Range[Max[q]],supnrm[Sort[Length/@Split[q],Greater]]]];
    Table[Length[Select[IntegerPartitions[n],supnrm]],{n,0,30}]

A317491 Number of fully normal integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 30, 33, 46, 50, 68, 77, 100, 112, 146, 167, 201, 234, 290, 326, 400, 456, 545, 622, 744, 845, 1004, 1153, 1351, 1551, 1819, 2103, 2434, 2808, 3248, 3735, 4304, 4943, 5661, 6506, 7446, 8499, 9657, 11070, 12505, 14325, 16183
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Comments

An integer partition is fully normal if either it is of the form (1,1,...,1) or its multiplicities span an initial interval of positive integers and, sorted in weakly decreasing order, are themselves fully normal.

Examples

			The a(6) = 6 fully normal partitions are (6), (51), (42), (411), (321), (111111). Missing from this list are (33), (3111), (222), (2211), (21111).
		

Crossrefs

Programs

  • Mathematica
    fulnrmQ[ptn_]:=With[{qtn=Sort[Length/@Split[ptn],Greater]},Or[ptn=={}||Union[ptn]=={1},And[Union[qtn]==Range[Max[qtn]],fulnrmQ[qtn]]]];
    Table[Length[Select[IntegerPartitions[n],fulnrmQ]],{n,0,30}]

Formula

a(n) = A317245(n) iff n is 1 or a prime number.

A329395 Numbers whose binary expansion without the most significant (first) digit has Lyndon and co-Lyndon factorizations of equal lengths.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 10, 13, 15, 16, 22, 25, 31, 32, 36, 42, 46, 49, 53, 59, 63, 64, 76, 82, 94, 97, 109, 115, 127, 128, 136, 148, 156, 162, 166, 169, 170, 172, 181, 182, 190, 193, 201, 202, 211, 213, 214, 217, 221, 227, 235, 247, 255, 256, 280, 292, 306, 308
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2019

Keywords

Comments

We define the Lyndon product of two or more finite sequences to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon word is a finite sequence that is prime with respect to the Lyndon product. Equivalently, a Lyndon word is a finite sequence that is lexicographically strictly less than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into Lyndon words, and if these factors are arranged in lexicographically decreasing order, their concatenation is equal to their Lyndon product. For example, (1001) has sorted Lyndon factorization (001)(1).
Similarly, the co-Lyndon product is the lexicographically minimal sequence obtainable by shuffling the sequences together, and a co-Lyndon word is a finite sequence that is prime with respect to the co-Lyndon product, or, equivalently, a finite sequence that is lexicographically strictly greater than all of its cyclic rotations. For example, (1001) has sorted co-Lyndon factorization (1)(100).
Conjecture: also numbers k such that the k-th composition in standard order (A066099) is a palindrome, cf. A025065, A242414, A317085, A317086, A317087, A335373. - Gus Wiseman, Jun 06 2020

Examples

			The sequence of terms together with their trimmed binary expansions and their co-Lyndon and Lyndon factorizations begins:
   1:      () =               0 = 0
   2:     (0) =             (0) = (0)
   3:     (1) =             (1) = (1)
   4:    (00) =          (0)(0) = (0)(0)
   7:    (11) =          (1)(1) = (1)(1)
   8:   (000) =       (0)(0)(0) = (0)(0)(0)
  10:   (010) =         (0)(10) = (01)(0)
  13:   (101) =         (10)(1) = (1)(01)
  15:   (111) =       (1)(1)(1) = (1)(1)(1)
  16:  (0000) =    (0)(0)(0)(0) = (0)(0)(0)(0)
  22:  (0110) =        (0)(110) = (011)(0)
  25:  (1001) =        (100)(1) = (1)(001)
  31:  (1111) =    (1)(1)(1)(1) = (1)(1)(1)(1)
  32: (00000) = (0)(0)(0)(0)(0) = (0)(0)(0)(0)(0)
  36: (00100) =     (0)(0)(100) = (001)(0)(0)
  42: (01010) =     (0)(10)(10) = (01)(01)(0)
  46: (01110) =       (0)(1110) = (0111)(0)
  49: (10001) =       (1000)(1) = (1)(0001)
  53: (10101) =     (10)(10)(1) = (1)(01)(01)
  59: (11011) =     (110)(1)(1) = (1)(1)(011)
  63: (11111) = (1)(1)(1)(1)(1) = (1)(1)(1)(1)(1)
		

Crossrefs

Lyndon and co-Lyndon compositions are (both) counted by A059966.
Numbers whose reversed binary expansion is Lyndon are A328596.
Numbers whose binary expansion is co-Lyndon are A275692.

Programs

  • Mathematica
    lynQ[q_]:=Array[Union[{q, RotateRight[q, #]}]=={q, RotateRight[q, #]}&, Length[q]-1, 1, And];
    lynfac[q_]:=If[Length[q]==0, {}, Function[i, Prepend[lynfac[Drop[q, i]], Take[q, i]]][Last[Select[Range[Length[q]], lynQ[Take[q, #]]&]]]];
    colynQ[q_]:=Array[Union[{RotateRight[q, #], q}]=={RotateRight[q, #], q}&, Length[q]-1, 1, And];
    colynfac[q_]:=If[Length[q]==0, {}, Function[i, Prepend[colynfac[Drop[q, i]], Take[q, i]]]@Last[Select[Range[Length[q]], colynQ[Take[q, #]]&]]];
    Select[Range[100],Length[lynfac[Rest[IntegerDigits[#,2]]]]==Length[colynfac[Rest[IntegerDigits[#,2]]]]&]

A317087 Numbers whose prime factors span an initial interval of prime numbers and whose sequence of prime multiplicities is a palindrome.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 30, 32, 36, 64, 90, 128, 210, 216, 256, 270, 300, 512, 810, 900, 1024, 1296, 2048, 2310, 2430, 2700, 2940, 3000, 3150, 4096, 7290, 7776, 8100, 8192, 9000, 11550, 16384, 21870, 24300, 27000, 30000, 30030, 32768, 41160, 44100, 46656, 47250, 48510
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Comments

3^m*10^k for k, m > 0 are terms of this sequence. - Chai Wah Wu, Jun 23 2020

Examples

			The sequence of rows of A296150 indexed by the terms of this sequence begins: (1), (11), (21), (111), (1111), (321), (11111), (2211), (111111), (3221), (1111111), (4321), (222111), (11111111), (32221), (33211), (111111111), (322221), (332211).
		

Crossrefs

Programs

  • Mathematica
    nrmpalQ[n_]:=With[{f=If[n==1,{},FactorInteger[n]]}, And[PrimePi/@ Sort[First/@f] == Range[ Length[f]], Reverse[Last/@f] == Last/@f]]; Select[Range[100],nrmpalQ]
    upto = 10^20; pL[n_] := Block[{p = Prime@Range@n, h = Ceiling[n/2]}, Take[p, h] Reverse@ If[n == 2 h, Take[p, -h], Prepend[ Take[p, 1-h], 1]]]; ric[v_, p_] := If[p == {}, AppendTo[L, v], Block[{w = v}, While[w <= upto, ric[w, Rest@ p]; w *= First@ p]]]; np = 1; L = {1}; While[(b = Times @@ Prime[Range@ np]) <= upto, ric[b, pL[np++]]]; Sort[L] (* Giovanni Resta, Jun 23 2020 *)
  • Python
    from sympy import factorint, primepi
    A317087_list = [1]
    for n in range(1,10**5):
        d = factorint(n)
        k, l = sorted(d.keys()), len(d)
        if l > 0 and l == primepi(max(d)):
            for i in range(l//2):
                if d[k[i]] != d[k[l-i-1]]:
                    break
            else:
                A317087_list.append(n) # Chai Wah Wu, Jun 23 2020

A317256 Number of alternately co-strong integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 13, 19, 25, 35, 42, 61, 74, 98, 122, 161, 194, 254, 304, 388, 472, 589, 700, 878, 1044, 1278, 1525, 1851, 2182, 2651, 3113, 3735, 4389, 5231, 6106, 7278, 8464, 9995, 11631, 13680, 15831, 18602, 21463, 25068, 28927, 33654, 38671, 44942, 51514
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2018

Keywords

Comments

A sequence is alternately co-strong if either it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and, when reversed, are themselves an alternately co-strong sequence.
Also the number of alternately strong reversed integer partitions of n.

Examples

			The a(1) = 1 through a(7) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (311)    (51)      (61)
                    (1111)  (2111)   (222)     (322)
                            (11111)  (321)     (421)
                                     (411)     (511)
                                     (2211)    (3211)
                                     (3111)    (4111)
                                     (21111)   (22111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
For example, starting with the partition y = (3,2,2,1,1) and repeatedly taking run-lengths and reversing gives (3,2,2,1,1) -> (2,2,1) -> (1,2), which is not weakly decreasing, so y is not  alternately co-strong. On the other hand, we have (3,3,2,2,1,1,1) -> (3,2,2) -> (2,1) -> (1,1) -> (2) -> (1), so (3,3,2,2,1,1,1) is counted under a(13).
		

Crossrefs

The Heinz numbers of these partitions are given by A317257.
The total (instead of alternating) version is A332275.
Dominates A332289 (the normal version).
The generalization to compositions is A332338.
The dual version is A332339.
The case of reversed partitions is (also) A332339.

Programs

  • Mathematica
    tniQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],tniQ[Reverse[Length/@Split[q]]]]];
    Table[Length[Select[IntegerPartitions[n],tniQ]],{n,0,30}]

Extensions

Updated with corrected terminology by Gus Wiseman, Mar 08 2020

A317085 Number of integer partitions of n whose sequence of multiplicities is a palindrome.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 6, 11, 12, 18, 16, 31, 25, 40, 47, 60, 58, 92, 85, 125, 135, 165, 173, 248, 246, 310, 351, 435, 450, 602, 608, 766, 846, 997, 1098, 1382, 1421, 1713, 1912, 2272, 2413, 2958, 3118, 3732, 4135, 4718, 5127, 6170, 6550, 7638, 8396, 9667, 10433
Offset: 0

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Examples

			The a(10) = 18 partitions:
(ten),
(91), (82), (73), (64), (55),
(721), (631), (541), (532),
(5221), (4411), (4321), (3322),
(33211), (32221), (22222),
(1111111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length/@Split[#]==Reverse[Length/@Split[#]]&]],{n,30}]
  • Python
    from sympy.utilities.iterables import partitions
    def A317085(n):
        c = 1
        for d in partitions(n,m=n*2//3):
            l = len(d)
            if l > 0:
                k = sorted(d.keys())
                for i in range(l//2):
                    if d[k[i]] != d[k[l-i-1]]:
                        break
                else:
                    c += 1
        return c # Chai Wah Wu, Jun 22 2020

A317088 Number of normal integer partitions of n whose multiset of multiplicities is also normal.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 4, 4, 5, 4, 6, 7, 9, 10, 13, 13, 15, 15, 17, 23, 22, 29, 29, 34, 36, 47, 45, 59, 60, 72, 77, 93, 95, 112, 121, 129, 149, 169, 176, 202, 228, 247, 268, 305, 334, 372, 405, 452, 496, 544, 594, 663, 724, 802
Offset: 0

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.

Examples

			The a(18) = 7 integer partitions are (543321), (5432211), (4433211), (4432221), (44322111), (4333221), (43322211).
		

Crossrefs

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Table[Length[Select[IntegerPartitions[n],And[normalQ[#],normalQ[Length/@Split[#]]]&]],{n,30}]
  • Python
    from sympy.utilities.iterables import partitions
    from sympy import integer_nthroot
    def A317088(n):
        if n == 0:
            return 1
        c = 0
        for d in partitions(n,k=integer_nthroot(2*n,2)[0]):
            l = len(d)
            if l > 0 and l == max(d):
                v = set(d.values())
                if len(v) == max(v):
                    c += 1
        return c # Chai Wah Wu, Jun 23 2020

A056503 Number of periodic palindromic structures of length n using a maximum of two different symbols.

Original entry on oeis.org

1, 2, 2, 4, 4, 7, 8, 14, 16, 26, 32, 51, 64, 100, 128, 198, 256, 392, 512, 778, 1024, 1552, 2048, 3091, 4096, 6176, 8192, 12324, 16384, 24640, 32768, 49222, 65536, 98432, 131072, 196744, 262144, 393472, 524288, 786698, 1048576, 1573376, 2097152, 3146256, 4194304
Offset: 1

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.
A periodic palindrome is just a necklace that is equivalent to its reverse. The number of binary periodic palindromes of length n is given by A164090(n). A binary periodic palindrome can only be equivalent to its complement when there are an equal number of 0's and 1's. - Andrew Howroyd, Sep 29 2017
Number of cyclic compositions (necklaces of positive integers) summing to n that can be rotated to form a palindrome. - Gus Wiseman, Sep 16 2018

Examples

			From _Gus Wiseman_, Sep 16 2018: (Start)
The sequence of palindromic cyclic compositions begins:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (113)    (33)      (115)
                    (112)   (122)    (114)     (133)
                    (1111)  (11111)  (222)     (223)
                                     (1122)    (11113)
                                     (11112)   (11212)
                                     (111111)  (11122)
                                               (1111111)
(End)
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    (* b = A164090, c = A045674 *)
    b[n_] := (1/4)*(7 - (-1)^n)*2^((1/4)*(2*n + (-1)^n - 1));
    c[0] = 1; c[n_] := c[n] = If[EvenQ[n], 2^(n/2-1) + c[n/2], 2^((n-1)/2)];
    a[n_?OddQ] := b[n]/2; a[n_?EvenQ] := (1/2)*(b[n] + c[n/2]);
    Array[a, 45] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Function[q,And[Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And],Array[SameQ[RotateRight[q,#],Reverse[RotateRight[q,#]]]&,Length[q],1,Or]]]]],{n,15}] (* Gus Wiseman, Sep 16 2018 *)

Formula

a(2n+1) = A164090(2n+1)/2 = 2^n, a(2n) = (A164090(2n) + A045674(n))/2. - Andrew Howroyd, Sep 29 2017

Extensions

a(17)-a(45) from Andrew Howroyd, Apr 07 2017
Showing 1-10 of 14 results. Next