cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A317081 Number of integer partitions of n whose multiplicities cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 5, 9, 11, 16, 20, 30, 34, 50, 58, 79, 96, 129, 152, 203, 243, 307, 375, 474, 563, 707, 850, 1042, 1246, 1532, 1815, 2215, 2632, 3173, 3765, 4525, 5323, 6375, 7519, 8916, 10478, 12414, 14523, 17133, 20034, 23488, 27422, 32090, 37285, 43511, 50559
Offset: 0

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Comments

Also the number of integer partitions of n with distinct section-sums, where the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. - Gus Wiseman, Apr 21 2025

Examples

			The a(1) = 1 through a(9) = 16 partitions:
 (1) (2) (3)  (4)   (5)   (6)   (7)    (8)    (9)
         (21) (31)  (32)  (42)  (43)   (53)   (54)
              (211) (41)  (51)  (52)   (62)   (63)
                    (221) (321) (61)   (71)   (72)
                    (311) (411) (322)  (332)  (81)
                                (331)  (422)  (432)
                                (421)  (431)  (441)
                                (511)  (521)  (522)
                                (3211) (611)  (531)
                                       (3221) (621)
                                       (4211) (711)
                                              (3321)
                                              (4221)
                                              (4311)
                                              (5211)
                                              (32211)
		

Crossrefs

The case with parts also covering an initial interval is A317088.
These partitions are ranked by A317090.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A047966 counts partitions with constant section-sums.
A048767 interchanges prime indices and prime multiplicities (Look-and-Say), see A048768.
A055932 lists numbers whose prime indices cover an initial interval.
A116540 counts normal set multipartitions.
A304442 counts partitions with equal run-sums, ranks A353833.
A381436 lists the section-sum partition of prime indices.
A381440 lists the Look-and-Say partition of prime indices.

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Table[Length[Select[IntegerPartitions[n],normalQ[Length/@Split[#]]&]],{n,30}]
  • Python
    from sympy.utilities.iterables import partitions
    def A317081(n):
        if n == 0:
            return 1
        c = 0
        for d in partitions(n):
            s = set(d.values())
            if len(s) == max(s):
                c += 1
        return c # Chai Wah Wu, Jun 22 2020

A317090 Positive integers whose prime multiplicities span an initial interval of positive integers.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Comments

The first term in this sequence but absent from A179983 is 180.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 6, 78, 820, 8379, 84440, 846646, 8473868, 84763404, 847714834, 8477408261, ... . Apparently, the asymptotic density of this sequence exists and equals 0.8477... . - Amiram Eldar, Aug 04 2024

Crossrefs

Subsequences: A129912\{1}, A179983\{1}.
Subsequence of A337533.

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Select[Range[2,100],normalQ[FactorInteger[#][[All,2]]]&]
  • PARI
    is(k) = {my(e = Set(factor(k)[,2])); k > 1 && vecmax(e) == #e;} \\ Amiram Eldar, Aug 04 2024

A317245 Number of supernormal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 1, 3, 3, 4, 2, 4, 5, 6, 6, 10, 7, 10, 9, 9, 10, 11, 12, 12, 21, 12, 18, 17, 21, 19, 28, 23, 28, 26, 27, 24, 32, 29, 36, 34, 46, 42, 55, 48, 65, 65, 74, 70, 88, 81, 83, 103, 112, 129, 153, 157, 190, 205, 210, 242, 283, 276, 321
Offset: 0

Views

Author

Gus Wiseman, Jul 24 2018

Keywords

Comments

An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition.

Examples

			The a(10) = 4 supernormal integer partitions are (4321), (33211), (322111), (1111111111).
The a(21) = 10 supernormal integer partitions:
  (654321),
  (4443321),
  (44432211), (44333211), (44332221),
  (4432221111), (4333221111), (4332222111),
  (433322211),
  (111111111111111111111).
		

Crossrefs

Programs

  • Mathematica
    supnrm[q_]:=Or[q=={}||Union[q]=={1},And[Union[q]==Range[Max[q]],supnrm[Sort[Length/@Split[q],Greater]]]];
    Table[Length[Select[IntegerPartitions[n],supnrm]],{n,0,30}]

A317491 Number of fully normal integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 30, 33, 46, 50, 68, 77, 100, 112, 146, 167, 201, 234, 290, 326, 400, 456, 545, 622, 744, 845, 1004, 1153, 1351, 1551, 1819, 2103, 2434, 2808, 3248, 3735, 4304, 4943, 5661, 6506, 7446, 8499, 9657, 11070, 12505, 14325, 16183
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Comments

An integer partition is fully normal if either it is of the form (1,1,...,1) or its multiplicities span an initial interval of positive integers and, sorted in weakly decreasing order, are themselves fully normal.

Examples

			The a(6) = 6 fully normal partitions are (6), (51), (42), (411), (321), (111111). Missing from this list are (33), (3111), (222), (2211), (21111).
		

Crossrefs

Programs

  • Mathematica
    fulnrmQ[ptn_]:=With[{qtn=Sort[Length/@Split[ptn],Greater]},Or[ptn=={}||Union[ptn]=={1},And[Union[qtn]==Range[Max[qtn]],fulnrmQ[qtn]]]];
    Table[Length[Select[IntegerPartitions[n],fulnrmQ]],{n,0,30}]

Formula

a(n) = A317245(n) iff n is 1 or a prime number.

A317089 Numbers whose prime factors span an initial interval of prime numbers and whose prime multiplicities span an initial interval of positive integers.

Original entry on oeis.org

2, 6, 12, 18, 30, 60, 90, 150, 180, 210, 300, 360, 420, 450, 540, 600, 630, 1050, 1260, 1350, 1470, 1500, 2100, 2250, 2310, 2520, 2940, 3150, 3780, 4200, 4410, 4620, 5880, 6300, 6930, 7350, 8820, 9450, 10500, 11550, 12600, 13230, 13860, 14700, 15750, 16170
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Examples

			The sequence of rows of A296150 indexed by the terms of this sequence begins: (1), (21), (211), (221), (321), (3211), (3221), (3321), (32211), (4321), (33211), (322111), (43211).
		

Crossrefs

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Select[Range[10000],And[normalQ[PrimePi/@FactorInteger[#][[All,1]]],normalQ[FactorInteger[#][[All,2]]]]&]
  • PARI
    ok(n)={my(f=factor(n), p=f[,1], e=vecsort(f[,2],,8)); n > 1 && #p==primepi(p[#p]) && #e==e[#e]} \\ Andrew Howroyd, Aug 26 2018

A317588 Number of uniformly normal integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 3, 6, 3, 5, 6, 7, 5, 8, 5, 7, 10, 7, 6, 12, 7, 12, 14, 10, 11, 18, 11, 13, 16, 18, 15, 35, 16, 26, 24, 27, 26, 47, 33, 44, 48, 58, 48, 76, 63, 81, 79, 98, 94, 123, 109, 135, 131, 148, 140, 162, 149, 152, 162, 166, 175, 202, 191, 221, 232, 233
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

An integer partition is uniformly normal if either (1) it is of the form (x, x, ..., x) for some x > 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a uniformly normal integer partition.

Examples

			The a(6) = 6 uniformly normal integer partitions are (6), (33), (321), (222), (2211), (111111). Missing from this list are (51), (42), (411), (3111), (21111).
The a(21) = 14 uniformly normal integer partitions (n = 21):
  (n),
  (777),
  (654321),
  (4443321), (3333333),
  (44432211), (44333211), (44332221),
  (4432221111), (4333221111), (4332222111),
  (433322211),
  (22222221111111),
  (111111111111111111111).
		

Crossrefs

Programs

  • Mathematica
    uninrmQ[q_]:=Or[q=={}||Length[Union[q]]==1,And[Union[q]==Range[Max[q]],uninrmQ[Sort[Length/@Split[q],Greater]]]];
    Table[Length[Select[IntegerPartitions[n],uninrmQ]],{n,0,30}]

A317092 Positive integers whose prime multiplicities are weakly decreasing and span an initial interval of positive integers.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 91, 92
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Select[Range[2,100],And[normalQ[FactorInteger[#][[All,2]]],OrderedQ[Reverse[FactorInteger[#][[All,2]]]]]&]
  • PARI
    is(n) = my (f=factor(n), w=#f~); if (w==0 || f[w,2]!=1, return (0), for (k=1, w-1, if (f[k,2]!=f[k+1,2] && f[k,2]!=1+f[k+1,2], return (0))); return (1)) \\ Rémy Sigrist, Sep 05 2018

A325330 Number of integer partitions of n whose multiplicities have multiplicities that cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 11, 16, 22, 31, 44, 55, 77, 96, 127, 158, 208, 251, 329, 400, 501, 610, 766, 915, 1141, 1368, 1677, 2005, 2454, 2913, 3553, 4219, 5110, 6053, 7300, 8644, 10376, 12238, 14645, 17216, 20504, 24047, 28501, 33336, 39373, 45871, 53926, 62745
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

Partitions whose parts cover an initial interval of positive integers are counted by A000009, with Heinz numbers A055932. Partitions whose multiplicities cover an initial interval of positive integers are counted by A317081, with Heinz numbers A317090. Partitions whose parts and multiplicities both cover an initial interval of positive integers are counted by A317088, with Heinz numbers A317089. Partitions whose multiplicities at every depth cover an initial interval of positive integers are counted by A317245, with Heinz numbers A317246.
The Heinz numbers of these partitions are given by A325370.

Examples

			The a(0) = 1 through a(8) = 16 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (111)  (22)    (221)    (33)      (322)      (44)
                        (211)   (311)    (222)     (331)      (332)
                        (1111)  (2111)   (411)     (511)      (422)
                                (11111)  (3111)    (2221)     (611)
                                         (21111)   (3211)     (2222)
                                         (111111)  (4111)     (3221)
                                                   (22111)    (4211)
                                                   (31111)    (5111)
                                                   (211111)   (22211)
                                                   (1111111)  (32111)
                                                              (41111)
                                                              (221111)
                                                              (311111)
                                                              (2111111)
                                                              (11111111)
For example, the partition (5,5,4,3,3,3,2,2) has multiplicities (2,1,3,2) with multiplicities (1,2,1) which cover the initial interval {1,2}, so (5,5,4,3,3,3,2,2) is counted under a(27).
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Table[Length[Select[IntegerPartitions[n],normQ[Length/@Split[Sort[Length/@Split[#]]]]&]],{n,0,30}]

A317091 Positive integers whose prime multiplicities are weakly increasing and span an initial interval of positive integers.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 101, 102
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Select[Range[2,150],And[normalQ[FactorInteger[#][[All,2]]],OrderedQ[FactorInteger[#][[All,2]]]]&]

A325332 Number of totally abnormal integer partitions of n.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 8, 1, 7, 5, 10, 2, 16, 4, 21, 15, 24, 17, 49, 29, 53, 53, 84, 65, 121, 92, 148, 141, 186, 179, 280, 223, 317, 318, 428, 387, 576, 512, 700, 734, 899, 900, 1260, 1207, 1551, 1668, 2041, 2109, 2748, 2795, 3463, 3775, 4446
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

A multiset is normal if its union is an initial interval of positive integers. A multiset is totally abnormal if it is not normal and either it is a singleton or its multiplicities form a totally abnormal multiset.
The Heinz numbers of these partitions are given by A325372.

Examples

			The a(2) = 1 through a(12) = 8 totally abnormal partitions (A = 10, B = 11, C = 12):
  (2)  (3)  (4)   (5)  (6)    (7)  (8)     (9)    (A)      (B)   (C)
            (22)       (33)        (44)    (333)  (55)           (66)
                       (222)       (2222)         (3322)         (444)
                                   (3311)         (4411)         (3333)
                                                  (22222)        (4422)
                                                                 (5511)
                                                                 (222222)
                                                                 (333111)
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    antinrmQ[ptn_]:=!normQ[ptn]&&(Length[ptn]==1||antinrmQ[Sort[Length/@Split[ptn]]]);
    Table[Length[Select[IntegerPartitions[n],antinrmQ]],{n,0,30}]
Showing 1-10 of 11 results. Next