cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A317081 Number of integer partitions of n whose multiplicities cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 5, 9, 11, 16, 20, 30, 34, 50, 58, 79, 96, 129, 152, 203, 243, 307, 375, 474, 563, 707, 850, 1042, 1246, 1532, 1815, 2215, 2632, 3173, 3765, 4525, 5323, 6375, 7519, 8916, 10478, 12414, 14523, 17133, 20034, 23488, 27422, 32090, 37285, 43511, 50559
Offset: 0

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Comments

Also the number of integer partitions of n with distinct section-sums, where the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. - Gus Wiseman, Apr 21 2025

Examples

			The a(1) = 1 through a(9) = 16 partitions:
 (1) (2) (3)  (4)   (5)   (6)   (7)    (8)    (9)
         (21) (31)  (32)  (42)  (43)   (53)   (54)
              (211) (41)  (51)  (52)   (62)   (63)
                    (221) (321) (61)   (71)   (72)
                    (311) (411) (322)  (332)  (81)
                                (331)  (422)  (432)
                                (421)  (431)  (441)
                                (511)  (521)  (522)
                                (3211) (611)  (531)
                                       (3221) (621)
                                       (4211) (711)
                                              (3321)
                                              (4221)
                                              (4311)
                                              (5211)
                                              (32211)
		

Crossrefs

The case with parts also covering an initial interval is A317088.
These partitions are ranked by A317090.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A047966 counts partitions with constant section-sums.
A048767 interchanges prime indices and prime multiplicities (Look-and-Say), see A048768.
A055932 lists numbers whose prime indices cover an initial interval.
A116540 counts normal set multipartitions.
A304442 counts partitions with equal run-sums, ranks A353833.
A381436 lists the section-sum partition of prime indices.
A381440 lists the Look-and-Say partition of prime indices.

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Table[Length[Select[IntegerPartitions[n],normalQ[Length/@Split[#]]&]],{n,30}]
  • Python
    from sympy.utilities.iterables import partitions
    def A317081(n):
        if n == 0:
            return 1
        c = 0
        for d in partitions(n):
            s = set(d.values())
            if len(s) == max(s):
                c += 1
        return c # Chai Wah Wu, Jun 22 2020

A317246 Heinz numbers of supernormal integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 30, 32, 60, 64, 90, 128, 150, 180, 210, 256, 300, 360, 450, 512, 540, 600, 1024, 1350, 1500, 2048, 2250, 2310, 2520, 3780, 4096, 4200, 5880, 8192, 9450, 10500, 12600, 13230, 15750, 16384, 17640, 18900, 20580, 26460, 29400, 30030
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2018

Keywords

Comments

An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition.

Examples

			Sequence of supernormal integer partitions begins: (), (1), (11), (21), (111), (211), (1111), (221), (321), (11111), (3211), (111111), (3221), (1111111), (3321), (32211), (4321).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    supnrm[q_]:=Or[q=={}||Union[q]=={1},And[Union[q]==Range[Max[q]],supnrm[Sort[Length/@Split[q],Greater]]]];
    Select[Range[10000],supnrm[primeMS[#]]&]

A317089 Numbers whose prime factors span an initial interval of prime numbers and whose prime multiplicities span an initial interval of positive integers.

Original entry on oeis.org

2, 6, 12, 18, 30, 60, 90, 150, 180, 210, 300, 360, 420, 450, 540, 600, 630, 1050, 1260, 1350, 1470, 1500, 2100, 2250, 2310, 2520, 2940, 3150, 3780, 4200, 4410, 4620, 5880, 6300, 6930, 7350, 8820, 9450, 10500, 11550, 12600, 13230, 13860, 14700, 15750, 16170
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Examples

			The sequence of rows of A296150 indexed by the terms of this sequence begins: (1), (21), (211), (221), (321), (3211), (3221), (3321), (32211), (4321), (33211), (322111), (43211).
		

Crossrefs

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Select[Range[10000],And[normalQ[PrimePi/@FactorInteger[#][[All,1]]],normalQ[FactorInteger[#][[All,2]]]]&]
  • PARI
    ok(n)={my(f=factor(n), p=f[,1], e=vecsort(f[,2],,8)); n > 1 && #p==primepi(p[#p]) && #e==e[#e]} \\ Andrew Howroyd, Aug 26 2018

A325337 Numbers whose prime exponents are distinct and cover an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 113, 116, 117, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153, 157, 163, 164
Offset: 1

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with distinct multiplicities covering an initial interval of positive integers. The enumeration of these partitions by sum is given by A320348.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   7: {4}
  11: {5}
  12: {1,1,2}
  13: {6}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  23: {9}
  28: {1,1,4}
  29: {10}
  31: {11}
  37: {12}
  41: {13}
  43: {14}
  44: {1,1,5}
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[100],UnsameQ@@Last/@FactorInteger[#]&&normQ[Last/@FactorInteger[#]]&]

A360558 Numbers whose multiset of prime factors (or indices, see A112798) has more adjacent equalities (or parts that have appeared before) than distinct parts.

Original entry on oeis.org

8, 16, 27, 32, 48, 64, 72, 80, 81, 96, 108, 112, 125, 128, 144, 160, 162, 176, 192, 200, 208, 216, 224, 243, 256, 272, 288, 304, 320, 324, 343, 352, 368, 384, 392, 400, 405, 416, 432, 448, 464, 480, 486, 496, 500, 512, 544, 567, 576, 592, 608, 625, 640, 648
Offset: 1

Views

Author

Gus Wiseman, Feb 20 2023

Keywords

Comments

No terms are squarefree.
Also numbers whose first differences of 0-prepended prime indices have median 0.

Examples

			The terms together with their prime indices begin:
     8: {1,1,1}
    16: {1,1,1,1}
    27: {2,2,2}
    32: {1,1,1,1,1}
    48: {1,1,1,1,2}
    64: {1,1,1,1,1,1}
    72: {1,1,1,2,2}
    80: {1,1,1,1,3}
    81: {2,2,2,2}
    96: {1,1,1,1,1,2}
   108: {1,1,2,2,2}
   112: {1,1,1,1,4}
   125: {3,3,3}
For example, the prime indices of 720 are {1,1,1,1,2,2,3} with 4 adjacent equalities and 3 distinct parts, so 720 is in the sequence.
		

Crossrefs

For equality we have A067801.
These partitions are counted by A360254.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A360005 gives median of prime indices (times 2).

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]>2*PrimeNu[#]&]

Formula

A001222(a(n)) > 2*A001221(a(n)).

A317492 Heinz numbers of fully normal integer partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Comments

An integer partition is fully normal if either it is of the form (1,1,...,1) or its multiplicities span an initial interval of positive integers and, sorted in weakly decreasing order, are themselves fully normal.

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fulnrmQ[ptn_]:=With[{qtn=Sort[Length/@Split[ptn],Greater]},Or[ptn=={}||Union[ptn]=={1},And[Union[qtn]==Range[Max[qtn]],fulnrmQ[qtn]]]];
    Select[Range[100],fulnrmQ[Reverse[primeMS[#]]]&]

A332276 Heinz numbers of widely totally normal integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 30, 32, 60, 64, 90, 128, 150, 180, 210, 256, 300, 360, 450, 512, 540, 600, 630, 1024, 1050, 1350, 1500, 2048, 2100, 2250, 2310, 2520, 2940, 3150, 3780, 4096, 4200, 4410, 5880, 8192, 8820, 9450, 10500, 11550, 12600, 13230, 14700
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2020

Keywords

Comments

First differs from A317246 in having 630.
A sequence of positive integers is widely totally normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has widely totally normal run-lengths.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
   90: {1,2,2,3}
  128: {1,1,1,1,1,1,1}
  150: {1,2,3,3}
  180: {1,1,2,2,3}
  210: {1,2,3,4}
  256: {1,1,1,1,1,1,1,1}
  300: {1,1,2,3,3}
  360: {1,1,1,2,2,3}
For example, starting with (4,3,2,2,1), the partition with Heinz number 630, and repeatedly taking run-lengths gives (4,3,2,2,1) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1). These are all normal and the last is all 1's, so 630 belongs to the sequence.
		

Crossrefs

Contains all powers of two A000079 and the primorials A002110.
Heinz numbers of normal integer partitions are A055932.
The case of reversed integer partitions is A332276 (this sequence).
The enumeration of these partitions by sum is A332277.
The enumeration of the generalization to compositions is A332279.
The co-strong version is A332290.
The strong version is A332291.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    gnaQ[y_]:=Or[y=={},Union[y]=={1},And[Union[y]==Range[Max[y]],gnaQ[Length/@Split[y]]]];
    Select[Range[1000],gnaQ[primeMS[#]]&]

A381542 Numbers > 1 whose greatest prime index equals their greatest prime multiplicity.

Original entry on oeis.org

2, 9, 12, 18, 36, 40, 112, 120, 125, 135, 200, 250, 270, 336, 352, 360, 375, 500, 540, 560, 567, 600, 675, 750, 784, 832, 1000, 1008, 1056, 1080, 1125, 1134, 1350, 1500, 1680, 1760, 1800, 2176, 2250, 2268, 2352, 2401, 2464, 2496, 2673, 2700, 2800, 2835, 3000
Offset: 1

Views

Author

Gus Wiseman, Mar 24 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
     2: {1}
     9: {2,2}
    12: {1,1,2}
    18: {1,2,2}
    36: {1,1,2,2}
    40: {1,1,1,3}
   112: {1,1,1,1,4}
   120: {1,1,1,2,3}
   125: {3,3,3}
   135: {2,2,2,3}
   200: {1,1,1,3,3}
   250: {1,3,3,3}
   270: {1,2,2,2,3}
   336: {1,1,1,1,2,4}
   352: {1,1,1,1,1,5}
   360: {1,1,1,2,2,3}
		

Crossrefs

Counting partitions by the LHS gives A008284, rank statistic A061395.
Counting partitions by the RHS gives A091602, rank statistic A051903.
For length instead of maximum we have A106529, counted by A047993 (balanced partitions).
For number of distinct factors instead of max index we have A212166, counted by A239964.
Partitions of this type are counted by A240312.
Including number of distinct parts gives A381543, counted by A382302.
A000005 counts divisors.
A000040 lists the primes, differences A001223.
A001222 counts prime factors, distinct A001221.
A051903 gives greatest prime exponent, least A051904.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents partition conjugation in terms of Heinz numbers.
A381544 counts partitions without more ones than any other part, ranks A381439.

Programs

  • Mathematica
    Select[Range[2,1000],PrimePi[FactorInteger[#][[-1,1]]]==Max@@FactorInteger[#][[All,2]]&]

Formula

A061395(a(n)) = A051903(a(n)).

A332290 Heinz numbers of widely alternately co-strongly normal integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 30, 32, 60, 64, 128, 210, 256, 360, 512, 1024, 2048, 2310, 2520, 4096, 8192, 16384, 30030, 32768, 65536, 75600, 131072, 262144, 510510, 524288
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2020

Keywords

Comments

An integer partition is widely alternately co-strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly increasing run-lengths (co-strong) which, if reversed, are themselves a widely alternately co-strongly normal partition.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
This sequence is closed under A181821, so there are infinitely many terms that are not powers of 2 or primorial numbers.

Examples

			The sequence of all widely alternately co-strongly normal integer partitions together with their Heinz numbers begins:
      1: ()
      2: (1)
      4: (1,1)
      6: (2,1)
      8: (1,1,1)
     12: (2,1,1)
     16: (1,1,1,1)
     30: (3,2,1)
     32: (1,1,1,1,1)
     60: (3,2,1,1)
     64: (1,1,1,1,1,1)
    128: (1,1,1,1,1,1,1)
    210: (4,3,2,1)
    256: (1,1,1,1,1,1,1,1)
    360: (3,2,2,1,1,1)
    512: (1,1,1,1,1,1,1,1,1)
   1024: (1,1,1,1,1,1,1,1,1,1)
   2048: (1,1,1,1,1,1,1,1,1,1,1)
   2310: (5,4,3,2,1)
   2520: (4,3,2,2,1,1,1)
For example, starting with y = (4,3,2,2,1,1,1), which has Heinz number 2520, and repeatedly taking run-lengths and reversing gives (4,3,2,2,1,1,1) -> (3,2,1,1) -> (2,1,1) -> (2,1) -> (1,1). These are all normal with weakly increasing run-lengths and the last is all 1's, so 2520 belongs to the sequence.
		

Crossrefs

Closed under A181821.
The non-co-strong version is A332276.
The enumeration of these partitions by sum is A332289.
The total (rather than alternating) version is A332293.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]];
    Select[Range[10000],totnQ[Reverse[primeMS[#]]]&]

A337533 1 together with nonsquares whose square part's square root is in the sequence.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68
Offset: 1

Views

Author

Peter Munn, Aug 31 2020

Keywords

Comments

The appearance of a number is determined by its prime signature.
Every squarefree number is present, as the square root of the square part of a squarefree number is 1. Other 4th-power-free numbers are present if and only if they are nonsquare.
If the square part of nonsquarefree k is a 4th power, k does not appear.
Every positive integer k is the product of a unique subset S_k of the terms of A050376, which are arranged in array form in A329050 (primes in column 0, squares of primes in column 1, 4th powers of primes in column 2 and so on). k > 1 is in this sequence if and only if the members of S_k occur in consecutive columns of A329050, starting with column 0.
If the qualifying condition in the previous paragraph was based on the rows instead of the columns of A329050, we would get A055932. The self-inverse function defined by A225546 transposes A329050. A225546 also has multiplicative properties such that if we consider A055932 and this sequence as sets, A225546(.) maps the members of either set 1:1 onto the other set.

Examples

			4 is square and not 1, so 4 is not in the sequence.
12 = 3 * 2^2 is nonsquare, and has square part 4, whose square root (2) is in the sequence. So 12 is in the sequence.
32 = 2 * 4^2 is nonsquare, but has square part 16, whose square root (4) is not in the sequence. So 32 is not in the sequence.
		

Crossrefs

Complement of A337534.
Closed under A000188(.).
A209229, A267116 are used in a formula defining this sequence.
Subsequence of A164514.
A007913, A008833, A008835, A335324 give the squarefree, square and comparably related parts of a number.
Related to A055932 via A225546.

Programs

  • Maple
    S:= {1}:
    for n from 2 to 100 do
      if not issqr(n) then
        F:= ifactors(n)[2];
        s:= mul(t[1]^floor(t[2]/2),t=F);
        if member(s,S) then S:= S union {n} fi
      fi
    od:
    sort(convert(S,list)); # Robert Israel, Jan 07 2025
  • Mathematica
    pow2Q[n_] := n == 2^IntegerExponent[n, 2]; Select[Range[100], # == 1 || pow2Q[1 + BitOr @@ (FactorInteger[#][[;; , 2]])] &] (* Amiram Eldar, Sep 18 2020 *)

Formula

Numbers m such that A209229(A267116(m) + 1) = 1.
If A008835(a(n)) > 1 then A335324(a(n)) > 1.
If A008833(a(n)) > 1 then A007913(a(n)) > 1.
Showing 1-10 of 30 results. Next