A382302
Number of integer partitions of n with greatest part, greatest multiplicity, and number of distinct parts all equal.
Original entry on oeis.org
0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 2, 2, 2, 4, 3, 3, 4, 4, 3, 6, 5, 8, 8, 13, 13, 16, 17, 21, 22, 25, 26, 32, 34, 37, 44, 47, 55, 62, 72, 78, 94, 103, 118, 132, 151, 163, 189, 205, 230, 251, 284, 307, 346, 377, 420, 462, 515, 562, 629, 690, 763
Offset: 0
The a(n) partitions for n = 1, 2, 10, 13, 14, 19, 20, 21:
1 . 32221 332221 333221 4333321 43333211 43333221
322111 333211 3322211 43322221 44322221 433332111
3322111 3332111 433321111 433222211 443222211
4321111 443221111 443321111 444321111
543211111 4332221111 4332222111
4322221111 4333221111
4432221111
5432211111
Counting partitions by the middle statistic gives
A091602, rank statistic
A051903.
The Heinz numbers of these partitions are listed by
A381543.
A381438 counts partitions by last part part of section-sum partition.
Cf.
A047966,
A130091,
A237984,
A239455,
A241131,
A351293,
A362608,
A363719,
A381079,
A381544,
A382303.
-
Table[Length[Select[IntegerPartitions[n],Max@@#==Max@@Length/@Split[#]==Length[Union[#]]&]],{n,0,30}]
-
A_x(N) = {if(N<1,[0],my(x='x+O('x^(N+1))); concat([0],Vec(sum(i=1,N, prod(j=1,i, (x^j-x^((i+1)*j))/(1-x^j)) - prod(j=1,i, (x^j-x^(i*j))/(1-x^j))))))}
A_x(60) \\ John Tyler Rascoe, Mar 25 2025
A381543
Numbers > 1 whose greatest prime index (A061395), number of distinct prime factors (A001221), and greatest prime multiplicity (A051903) are all equal.
Original entry on oeis.org
2, 12, 18, 36, 120, 270, 360, 540, 600, 750, 1080, 1350, 1500, 1680, 1800, 2250, 2700, 3000, 4500, 5040, 5400, 5670, 6750, 8400, 9000, 11340, 11760, 13500, 15120, 22680, 25200, 26250, 27000, 28350, 35280, 36960, 39690, 42000, 45360, 52500, 56700, 58800, 72030
Offset: 1
The terms together with their prime indices begin:
2: {1}
12: {1,1,2}
18: {1,2,2}
36: {1,1,2,2}
120: {1,1,1,2,3}
270: {1,2,2,2,3}
360: {1,1,1,2,2,3}
540: {1,1,2,2,2,3}
600: {1,1,1,2,3,3}
750: {1,2,3,3,3}
1080: {1,1,1,2,2,2,3}
1350: {1,2,2,2,3,3}
1500: {1,1,2,3,3,3}
1680: {1,1,1,1,2,3,4}
1800: {1,1,1,2,2,3,3}
Partitions of this type are counted by
A382302.
A122111 represents partition conjugation in terms of Heinz numbers.
-
Select[Range[2,1000],PrimePi[FactorInteger[#][[-1,1]]]==PrimeNu[#]==Max@@FactorInteger[#][[All,2]]&]
A381079
Number of integer partitions of n whose greatest multiplicity is equal to their sum of distinct parts.
Original entry on oeis.org
0, 1, 0, 0, 1, 1, 0, 3, 1, 3, 1, 2, 0, 7, 2, 6, 7, 11, 3, 19, 8, 22, 16, 32, 17, 48, 21, 50, 39, 71, 35, 101, 58, 120, 89, 156, 97, 228, 133, 267, 203, 352, 228, 483, 322, 571, 444, 734, 524, 989, 683, 1160, 942, 1490, 1103, 1919, 1438, 2302, 1890, 2881, 2243, 3683, 2842, 4384, 3703, 5461
Offset: 0
The partition (3,2,2,1,1,1,1,1,1) has greatest multiplicity 6 and distinct parts (3,2,1) with sum 6, so is counted under a(13).
The a(1) = 1 through a(13) = 7 partitions:
1 . . 22 2111 . 2221 22211 333 331111 5111111 . 33331
22111 222111 32111111 322222
31111 411111 3331111
4411111
61111111
322111111
421111111
For greatest part instead of multiplicity we have
A000005.
These partitions are ranked by
A381632, for part instead of multiplicity
A246655.
A091605 counts partitions with greatest multiplicity 2.
A240312 counts partitions with max part = max multiplicity, ranks
A381542.
-
Table[Length[Select[IntegerPartitions[n],Max@@Length/@Split[#]==Total[Union[#]]&]],{n,0,30}]
A381544
Number of integer partitions of n not containing more ones than any other part.
Original entry on oeis.org
0, 0, 1, 2, 3, 4, 7, 8, 13, 17, 24, 30, 45, 54, 75, 97, 127, 160, 212, 263, 342, 427, 541, 672, 851, 1046, 1307, 1607, 1989, 2428, 2993, 3631, 4443, 5378, 6533, 7873, 9527, 11424, 13752, 16447, 19701, 23470, 28016, 33253, 39537, 46801, 55428, 65408, 77238
Offset: 0
The a(2) = 1 through a(9) = 17 partitions:
(2) (3) (4) (5) (6) (7) (8) (9)
(21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(222) (322) (71) (81)
(321) (331) (332) (333)
(2211) (421) (422) (432)
(2221) (431) (441)
(521) (522)
(2222) (531)
(3221) (621)
(3311) (3222)
(22211) (3321)
(4221)
(22221)
(32211)
(222111)
The Heinz numbers of these partitions are
A381439.
A091602 counts partitions by the greatest multiplicity, rank statistic
A051903.
A239964 counts partitions with max multiplicity = length, ranks
A212166.
A240312 counts partitions with max part = max multiplicity, ranks
A381542.
A382302 counts partitions with max = max multiplicity = distinct length, ranks
A381543.
-
Table[Length[Select[IntegerPartitions[n],Count[#,1]<=Max@@Length/@Split[DeleteCases[#,1]]&]],{n,0,30}]
A381632
Numbers such that (greatest prime exponent) = (sum of distinct prime indices).
Original entry on oeis.org
2, 9, 24, 54, 72, 80, 108, 125, 216, 224, 400, 704, 960, 1215, 1250, 1568, 1664, 2000, 2401, 2500, 2688, 2880, 4352, 4800, 5000, 5103, 6075, 7290, 7744, 8064, 8448, 8640, 8960, 9375, 9728, 10000, 10976, 14400, 14580, 18816, 19968, 21632, 23552, 24000, 24057
Offset: 1
The terms together with their prime indices begin:
2: {1}
9: {2,2}
24: {1,1,1,2}
54: {1,2,2,2}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
108: {1,1,2,2,2}
125: {3,3,3}
216: {1,1,1,2,2,2}
224: {1,1,1,1,1,4}
400: {1,1,1,1,3,3}
704: {1,1,1,1,1,1,5}
960: {1,1,1,1,1,1,2,3}
For (length) instead of (sum of distinct) we have
A000961.
Including number of parts gives
A062457 (degenerate).
Partitions of this type are counted by
A381079.
A239964 counts partitions with max multiplicity = length, ranks
A212166.
A382302 counts partitions with max = max multiplicity = distinct length, ranks
A381543.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Max@@Last/@FactorInteger[#]==Total[Union[prix[#]]]&]
A382303
Number of integer partitions of n with exactly as many ones as the next greatest multiplicity.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 3, 2, 4, 5, 8, 6, 15, 13, 19, 25, 33, 36, 54, 58, 80, 96, 122, 141, 188, 217, 274, 326, 408, 474, 600, 695, 859, 1012, 1233, 1440, 1763, 2050, 2475, 2899, 3476, 4045, 4850, 5630, 6695, 7797, 9216, 10689, 12628, 14611, 17162, 19875, 23253
Offset: 0
The a(3) = 1 through a(10) = 8 partitions:
(21) (31) (41) (51) (61) (71) (81) (91)
(321) (421) (431) (531) (541)
(2211) (521) (621) (631)
(3311) (32211) (721)
(222111) (4321)
(4411)
(33211)
(42211)
The Heinz numbers of these partitions are
A360014.
A091602 counts partitions by the greatest multiplicity, rank statistic
A051903.
A239964 counts partitions with max multiplicity = length, ranks
A212166.
A382302 counts partitions with max = max multiplicity = distinct length, ranks
A381543.
Cf.
A047966,
A051904,
A091605,
A116861,
A237984,
A239455,
A362608,
A363724,
A381079,
A381437,
A381438.
-
Table[Length[Select[IntegerPartitions[n],Count[#,1]==Max@@Length/@Split[DeleteCases[#,1]]&]],{n,0,30}]
A385216
Greatest Heinz number of a sparse submultiset of the prime indices of n, where a multiset is sparse iff 1 is not a first difference.
Original entry on oeis.org
1, 2, 3, 4, 5, 3, 7, 8, 9, 10, 11, 4, 13, 14, 5, 16, 17, 9, 19, 20, 21, 22, 23, 8, 25, 26, 27, 28, 29, 10, 31, 32, 33, 34, 7, 9, 37, 38, 39, 40, 41, 21, 43, 44, 9, 46, 47, 16, 49, 50, 51, 52, 53, 27, 55, 56, 57, 58, 59, 20, 61, 62, 63, 64, 65, 33, 67, 68, 69
Offset: 1
The prime indices of 12 are {1,1,2}, with sparse submultisets {{},{1},{2},{1,1}}, with Heinz numbers {1,2,3,4}, so a(12) = 4.
The prime indices of 36 are {1,1,2,2}, with sparse submultisets {{},{1},{2},{1,1},{2,2}}, with Heinz numbers {1,2,3,4,9}, so a(36) = 9.
The prime indices of 462 are {1,2,4,5}, with sparse submultisets {{},{1},{2},{4},{5},{1,4},{2,4},{1,5},{2,5}}, with Heinz numbers {1,2,3,7,11,14,21,22,33}, so a(462) = 33.
The union is
A319630 (Heinz numbers of sparse multisets), complement
A104210.
A000005 counts divisors (or submultisets of prime indices).
A212166 ranks partitions with max multiplicity = length, counted by
A239964.
A381542 ranks partitions with max part = max multiplicity, counted by
A240312.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Max@@Select[Divisors[n],FreeQ[Differences[prix[#]],1]&],{n,100}]
A382526
Number of integer partitions of n with fewer ones than greatest multiplicity.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 41, 56, 72, 94, 124, 158, 205, 262, 331, 419, 531, 663, 829, 1033, 1281, 1581, 1954, 2393, 2936, 3584, 4366, 5300, 6433, 7764, 9374, 11277, 13548, 16225, 19425, 23166, 27623, 32842, 39004, 46212, 54719, 64610, 76251
Offset: 0
The a(2) = 1 through a(9) = 12 partitions:
(2) (3) (4) (5) (6) (7) (8) (9)
(22) (32) (33) (43) (44) (54)
(221) (42) (52) (53) (63)
(222) (322) (62) (72)
(331) (332) (333)
(2221) (422) (432)
(2222) (441)
(3221) (522)
(22211) (3222)
(3321)
(4221)
(22221)
The complement (greater than or equal to) is
A241131 except first, ranks
A360015.
The opposite version (greater than) is
A241131 shifted except first, ranks
A360013.
A091602 counts partitions by the greatest multiplicity, rank statistic
A051903.
A239964 counts partitions with max multiplicity = length, ranks
A212166.
A240312 counts partitions with max part = max multiplicity, ranks
A381542.
A382302 counts partitions with max = max multiplicity = distinct length, ranks
A381543.
A382856
Numbers whose prime indices do not have a mode of 1.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 51, 53, 54, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 98, 99, 101, 103, 105, 107, 108, 109, 111, 113, 115
Offset: 1
The terms together with their prime indices begin:
1: {}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
15: {2,3}
17: {7}
18: {1,2,2}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
The case of non-unique mode is
A024556.
The complement is
A360015 except first.
Partitions of this type are are counted by
A382526 except first, complement
A241131.
A091602 counts partitions by the greatest multiplicity, rank statistic
A051903.
A240312 counts partitions with max part = max multiplicity, ranks
A381542.
Cf.
A000265,
A002865,
A106529,
A327473,
A327476,
A362605,
A363486,
A356862,
A360013,
A360014,
A381437.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],FreeQ[Commonest[prix[#]],1]&]
Showing 1-9 of 9 results.
Comments