A381542
Numbers > 1 whose greatest prime index equals their greatest prime multiplicity.
Original entry on oeis.org
2, 9, 12, 18, 36, 40, 112, 120, 125, 135, 200, 250, 270, 336, 352, 360, 375, 500, 540, 560, 567, 600, 675, 750, 784, 832, 1000, 1008, 1056, 1080, 1125, 1134, 1350, 1500, 1680, 1760, 1800, 2176, 2250, 2268, 2352, 2401, 2464, 2496, 2673, 2700, 2800, 2835, 3000
Offset: 1
The terms together with their prime indices begin:
2: {1}
9: {2,2}
12: {1,1,2}
18: {1,2,2}
36: {1,1,2,2}
40: {1,1,1,3}
112: {1,1,1,1,4}
120: {1,1,1,2,3}
125: {3,3,3}
135: {2,2,2,3}
200: {1,1,1,3,3}
250: {1,3,3,3}
270: {1,2,2,2,3}
336: {1,1,1,1,2,4}
352: {1,1,1,1,1,5}
360: {1,1,1,2,2,3}
For length instead of maximum we have
A106529, counted by
A047993 (balanced partitions).
For number of distinct factors instead of max index we have
A212166, counted by
A239964.
Partitions of this type are counted by
A240312.
A122111 represents partition conjugation in terms of Heinz numbers.
A381544 counts partitions without more ones than any other part, ranks
A381439.
-
Select[Range[2,1000],PrimePi[FactorInteger[#][[-1,1]]]==Max@@FactorInteger[#][[All,2]]&]
A382302
Number of integer partitions of n with greatest part, greatest multiplicity, and number of distinct parts all equal.
Original entry on oeis.org
0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 2, 2, 2, 4, 3, 3, 4, 4, 3, 6, 5, 8, 8, 13, 13, 16, 17, 21, 22, 25, 26, 32, 34, 37, 44, 47, 55, 62, 72, 78, 94, 103, 118, 132, 151, 163, 189, 205, 230, 251, 284, 307, 346, 377, 420, 462, 515, 562, 629, 690, 763
Offset: 0
The a(n) partitions for n = 1, 2, 10, 13, 14, 19, 20, 21:
1 . 32221 332221 333221 4333321 43333211 43333221
322111 333211 3322211 43322221 44322221 433332111
3322111 3332111 433321111 433222211 443222211
4321111 443221111 443321111 444321111
543211111 4332221111 4332222111
4322221111 4333221111
4432221111
5432211111
Counting partitions by the middle statistic gives
A091602, rank statistic
A051903.
The Heinz numbers of these partitions are listed by
A381543.
A381438 counts partitions by last part part of section-sum partition.
Cf.
A047966,
A130091,
A237984,
A239455,
A241131,
A351293,
A362608,
A363719,
A381079,
A381544,
A382303.
-
Table[Length[Select[IntegerPartitions[n],Max@@#==Max@@Length/@Split[#]==Length[Union[#]]&]],{n,0,30}]
-
A_x(N) = {if(N<1,[0],my(x='x+O('x^(N+1))); concat([0],Vec(sum(i=1,N, prod(j=1,i, (x^j-x^((i+1)*j))/(1-x^j)) - prod(j=1,i, (x^j-x^(i*j))/(1-x^j))))))}
A_x(60) \\ John Tyler Rascoe, Mar 25 2025
A381544
Number of integer partitions of n not containing more ones than any other part.
Original entry on oeis.org
0, 0, 1, 2, 3, 4, 7, 8, 13, 17, 24, 30, 45, 54, 75, 97, 127, 160, 212, 263, 342, 427, 541, 672, 851, 1046, 1307, 1607, 1989, 2428, 2993, 3631, 4443, 5378, 6533, 7873, 9527, 11424, 13752, 16447, 19701, 23470, 28016, 33253, 39537, 46801, 55428, 65408, 77238
Offset: 0
The a(2) = 1 through a(9) = 17 partitions:
(2) (3) (4) (5) (6) (7) (8) (9)
(21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(222) (322) (71) (81)
(321) (331) (332) (333)
(2211) (421) (422) (432)
(2221) (431) (441)
(521) (522)
(2222) (531)
(3221) (621)
(3311) (3222)
(22211) (3321)
(4221)
(22221)
(32211)
(222111)
The Heinz numbers of these partitions are
A381439.
A091602 counts partitions by the greatest multiplicity, rank statistic
A051903.
A239964 counts partitions with max multiplicity = length, ranks
A212166.
A240312 counts partitions with max part = max multiplicity, ranks
A381542.
A382302 counts partitions with max = max multiplicity = distinct length, ranks
A381543.
-
Table[Length[Select[IntegerPartitions[n],Count[#,1]<=Max@@Length/@Split[DeleteCases[#,1]]&]],{n,0,30}]
A381632
Numbers such that (greatest prime exponent) = (sum of distinct prime indices).
Original entry on oeis.org
2, 9, 24, 54, 72, 80, 108, 125, 216, 224, 400, 704, 960, 1215, 1250, 1568, 1664, 2000, 2401, 2500, 2688, 2880, 4352, 4800, 5000, 5103, 6075, 7290, 7744, 8064, 8448, 8640, 8960, 9375, 9728, 10000, 10976, 14400, 14580, 18816, 19968, 21632, 23552, 24000, 24057
Offset: 1
The terms together with their prime indices begin:
2: {1}
9: {2,2}
24: {1,1,1,2}
54: {1,2,2,2}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
108: {1,1,2,2,2}
125: {3,3,3}
216: {1,1,1,2,2,2}
224: {1,1,1,1,1,4}
400: {1,1,1,1,3,3}
704: {1,1,1,1,1,1,5}
960: {1,1,1,1,1,1,2,3}
For (length) instead of (sum of distinct) we have
A000961.
Including number of parts gives
A062457 (degenerate).
Partitions of this type are counted by
A381079.
A239964 counts partitions with max multiplicity = length, ranks
A212166.
A382302 counts partitions with max = max multiplicity = distinct length, ranks
A381543.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Max@@Last/@FactorInteger[#]==Total[Union[prix[#]]]&]
A382303
Number of integer partitions of n with exactly as many ones as the next greatest multiplicity.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 3, 2, 4, 5, 8, 6, 15, 13, 19, 25, 33, 36, 54, 58, 80, 96, 122, 141, 188, 217, 274, 326, 408, 474, 600, 695, 859, 1012, 1233, 1440, 1763, 2050, 2475, 2899, 3476, 4045, 4850, 5630, 6695, 7797, 9216, 10689, 12628, 14611, 17162, 19875, 23253
Offset: 0
The a(3) = 1 through a(10) = 8 partitions:
(21) (31) (41) (51) (61) (71) (81) (91)
(321) (421) (431) (531) (541)
(2211) (521) (621) (631)
(3311) (32211) (721)
(222111) (4321)
(4411)
(33211)
(42211)
The Heinz numbers of these partitions are
A360014.
A091602 counts partitions by the greatest multiplicity, rank statistic
A051903.
A239964 counts partitions with max multiplicity = length, ranks
A212166.
A382302 counts partitions with max = max multiplicity = distinct length, ranks
A381543.
Cf.
A047966,
A051904,
A091605,
A116861,
A237984,
A239455,
A362608,
A363724,
A381079,
A381437,
A381438.
-
Table[Length[Select[IntegerPartitions[n],Count[#,1]==Max@@Length/@Split[DeleteCases[#,1]]&]],{n,0,30}]
A382526
Number of integer partitions of n with fewer ones than greatest multiplicity.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 41, 56, 72, 94, 124, 158, 205, 262, 331, 419, 531, 663, 829, 1033, 1281, 1581, 1954, 2393, 2936, 3584, 4366, 5300, 6433, 7764, 9374, 11277, 13548, 16225, 19425, 23166, 27623, 32842, 39004, 46212, 54719, 64610, 76251
Offset: 0
The a(2) = 1 through a(9) = 12 partitions:
(2) (3) (4) (5) (6) (7) (8) (9)
(22) (32) (33) (43) (44) (54)
(221) (42) (52) (53) (63)
(222) (322) (62) (72)
(331) (332) (333)
(2221) (422) (432)
(2222) (441)
(3221) (522)
(22211) (3222)
(3321)
(4221)
(22221)
The complement (greater than or equal to) is
A241131 except first, ranks
A360015.
The opposite version (greater than) is
A241131 shifted except first, ranks
A360013.
A091602 counts partitions by the greatest multiplicity, rank statistic
A051903.
A239964 counts partitions with max multiplicity = length, ranks
A212166.
A240312 counts partitions with max part = max multiplicity, ranks
A381542.
A382302 counts partitions with max = max multiplicity = distinct length, ranks
A381543.
Showing 1-6 of 6 results.
Comments