A317088 Number of normal integer partitions of n whose multiset of multiplicities is also normal.
1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 4, 4, 5, 4, 6, 7, 9, 10, 13, 13, 15, 15, 17, 23, 22, 29, 29, 34, 36, 47, 45, 59, 60, 72, 77, 93, 95, 112, 121, 129, 149, 169, 176, 202, 228, 247, 268, 305, 334, 372, 405, 452, 496, 544, 594, 663, 724, 802
Offset: 0
Keywords
Examples
The a(18) = 7 integer partitions are (543321), (5432211), (4433211), (4432221), (44322111), (4333221), (43322211).
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..192
Programs
-
Mathematica
normalQ[m_]:=Union[m]==Range[Max[m]]; Table[Length[Select[IntegerPartitions[n],And[normalQ[#],normalQ[Length/@Split[#]]]&]],{n,30}]
-
Python
from sympy.utilities.iterables import partitions from sympy import integer_nthroot def A317088(n): if n == 0: return 1 c = 0 for d in partitions(n,k=integer_nthroot(2*n,2)[0]): l = len(d) if l > 0 and l == max(d): v = set(d.values()) if len(v) == max(v): c += 1 return c # Chai Wah Wu, Jun 23 2020
Comments