cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317127 a(0) = a(1) = a(2) = 1; for n >= 3, a(n) = freq(a(n-1),n) + freq(a(n-3),n) where freq(i, j) is the number of times i appears in the terms a(0) .. a(j-1).

Original entry on oeis.org

1, 1, 1, 6, 4, 4, 3, 3, 4, 5, 3, 6, 3, 8, 3, 10, 2, 6, 4, 5, 5, 7, 4, 8, 3, 11, 3, 14, 2, 9, 2, 6, 5, 7, 6, 9, 4, 11, 4, 14, 4, 16, 3, 16, 4, 17, 3, 18, 2, 13, 2, 10, 3, 15, 3, 22, 2, 17, 3, 18, 4, 22, 4, 22, 6, 17, 6, 14, 6, 16, 6, 18, 6, 20, 4, 22, 5, 17, 8, 8, 8, 10, 8, 12, 4, 19, 2, 20, 3, 20, 6, 24, 4
Offset: 0

Views

Author

Altug Alkan, Jul 21 2018

Keywords

Comments

Inspired by A316774.
In this sequence, it is obvious that we have exactly three 1’s that are a(0) = a(1) = a(2) = 1. Can we determine the frequency characteristics of some other positive integers? For example, are there infinitely many 2's in this sequence?

Crossrefs

Cf. A316774.

Programs

  • Maple
    b:= proc() 0 end:
    a:= proc(n) option remember; local t;
          t:= `if`(n<3, 1, b(a(n-1))+b(a(n-3)));
          b(t):= b(t)+1; t
        end:
    seq(a(n), n=0..100); # after Alois P. Heinz at A316774
  • Mathematica
    c = <||>; f[n_] := If[KeyExistsQ[c,n],c[n],0]; a[n_] := a[n] = Block[{v}, v = If[n<3, 1, f[a[n-1]] + f[a[n-3]]]; If[f[v]>0, c[v] = c[v]+1, c[v]=1]; v]; Array[a, 93, 0] (* Giovanni Resta, Jul 24 2018 *)
  • PARI
    up_to = 5000;
    listA317127off1(up_to) = { my(v = vector(up_to),c); v[1] = v[2] = v[3] = 1; for(n=4,up_to, c=0; for(k=1,(n-1), c += ((v[k]==v[n-1])+(v[k]==v[n-3]))); v[n] = c); (v); };
    listA317127off1(up_to) = { my(v = vector(up_to), m = Map(), c); v[1] = v[2] = v[3] = 1; mapput(m, 1, 3); for(n=4,up_to, c = (mapget(m, v[n-1])+mapget(m,v[n-3])); v[n] = c; mapput(m, c, if(!mapisdefined(m, c), 1, 1+mapget(m, c)))); (v); }; \\ Faster!
    v317127 = listA317127off1(1+up_to);
    A317127(n) = v317127[1+n]; \\ Antti Karttunen, Jul 23 2018