A317129 Number of permutations of [n] whose lengths of increasing runs are squares.
1, 1, 1, 1, 2, 9, 40, 151, 571, 2897, 19730, 140190, 953064, 6708323, 54631552, 510143776, 4987278692, 49168919669, 505209884549, 5638095015594, 67921924172174, 852861260421398, 10992380368532792, 147296144926635359, 2082906807168675698, 30973237281668975230
Offset: 0
Keywords
Examples
a(3) = 1: 321. a(4) = 2: 1234, 4321. a(5) = 9: 12354, 12453, 13452, 21345, 23451, 31245, 41235, 51234, 54321.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Maple
g:= n-> `if`(issqr(n), 1, 0): b:= proc(u, o, t) option remember; `if`(u+o=0, g(t), `if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+ add(b(u+j-1, o-j, t+1), j=1..o)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..27);
-
Mathematica
g[n_] := If[IntegerQ@Sqrt[n], 1, 0]; b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, g[t], If[g[t] == 1, Sum[b[u - j, o + j - 1, 1], {j, 1, u}], 0] + Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 27] (* Jean-François Alcover, Mar 29 2021, after Alois P. Heinz *)