A205801
Expansion of e.g.f. exp( Sum_{n>=1} x^(n^2) / (n^2) ).
Original entry on oeis.org
1, 1, 1, 1, 7, 31, 91, 211, 1681, 52417, 461161, 2427481, 10744471, 219643711, 2619643027, 18939628891, 1410692293921, 23943786881281, 263853697605841, 2237281161036337, 53316533506210471, 900164075618402911, 11265158441537890891, 112769404714319769571
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 7*x^4/4! + 31*x^5/5! + 91*x^6/6! +...
where
log(A(x)) = x + x^4/4 + x^9/9 + x^16/16 + x^25/25 + x^36/36 +...
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(issqr(j),
a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 12 2016
-
a[n_] := a[n] = If[n==0, 1, Sum[If[IntegerQ @ Sqrt[j], a[n-j]*(j-1)! * Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 19 2017, after Alois P. Heinz *)
nmax = 25; CoefficientList[Series[Product[1/(1 - x^k)^(LiouvilleLambda[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 17 2019 *)
-
{a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(n+1), x^(m^2)/(m^2)+x*O(x^n))), n)}
-
a(n) = if(n==0, 1, (n-1)!*sum(k=1, sqrtint(n), a(n-k^2)/(n-k^2)!)); \\ Seiichi Manyama, Apr 29 2022
A317130
Number of permutations of [n] whose lengths of increasing runs are triangular numbers.
Original entry on oeis.org
1, 1, 1, 2, 7, 24, 93, 483, 2832, 17515, 123226, 978405, 8312802, 75966887, 756376739, 8070649675, 91320842018, 1099612368110, 14054043139523, 189320856378432, 2682416347625463, 39945105092501742, 623240458310527252, 10160826473676346731, 172871969109661492526
Offset: 0
a(2) = 1: 21.
a(3) = 2: 123, 321.
a(4) = 7: 1243, 1342, 2134, 2341, 3124, 4123, 4321.
a(5) = 24: 12543, 13542, 14532, 21354, 21453, 23541, 24531, 31254, 31452, 32145, 32451, 34521, 41253, 41352, 42135, 42351, 43125, 51243, 51342, 52134, 52341, 53124, 54123, 54321.
-
g:= n-> `if`(issqr(8*n+1), 1, 0):
b:= proc(u, o, t) option remember; `if`(u+o=0, g(t),
`if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+
add(b(u+j-1, o-j, t+1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..27);
-
g[n_] := If[IntegerQ @ Sqrt[8n+1], 1, 0];
b[u_, o_, t_] := b[u, o, t] = If[u+o==0, g[t], If[g[t]==1, Sum[b[u-j, o+j-1, 1], {j, 1, u}], 0] + Sum[b[u+j-1, o-j, t+1], {j, 1, o}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 27] (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
A317128
Number of permutations of [n] whose lengths of increasing runs are Fibonacci numbers.
Original entry on oeis.org
1, 1, 2, 6, 23, 112, 652, 4425, 34358, 299971, 2910304, 31059715, 361603228, 4560742758, 61947243329, 901511878198, 13994262184718, 230811430415207, 4030772161073249, 74301962970014978, 1441745847111969415, 29374226224980834077, 626971133730275593916
Offset: 0
-
g:= n-> (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2):
b:= proc(u, o, t) option remember; `if`(u+o=0, g(t),
`if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+
add(b(u+j-1, o-j, t+1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..27);
-
g[n_] := With[{t = 5n^2}, If[IntegerQ@Sqrt[t+4] || IntegerQ@Sqrt[t-4], 1, 0]];
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, g[t],
If[g[t] == 1, Sum[b[u - j, o + j - 1, 1], {j, 1, u}], 0] +
Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 27] (* Jean-François Alcover, Mar 29 2021, after Alois P. Heinz *)
A317131
Number of permutations of [n] whose lengths of increasing runs are prime numbers.
Original entry on oeis.org
1, 0, 1, 1, 5, 19, 80, 520, 2898, 22486, 171460, 1509534, 14446457, 147241144, 1650934446, 19494460567, 248182635904, 3340565727176, 47659710452780, 718389090777485, 11381176852445592, 189580213656445309, 3305258537062221020, 60273557241570401742
Offset: 0
a(2) = 1: 12.
a(3) = 1: 123.
a(4) = 5: 1324, 1423, 2314, 2413, 3412.
a(5) = 19: 12345, 12435, 12534, 13245, 13425, 13524, 14235, 14523, 15234, 23145, 23415, 23514, 24135, 24513, 25134, 34125, 34512, 35124, 45123.
-
g:= n-> `if`(n=0 or isprime(n), 1, 0):
b:= proc(u, o, t) option remember; `if`(u+o=0, g(t),
`if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+
add(b(u+j-1, o-j, t+1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..27);
-
g[n_] := If[n == 0 || PrimeQ[n], 1, 0];
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, g[t],
If[g[t] == 1, Sum[b[u - j, o + j - 1, 1], {j, 1, u}], 0] +
Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]];
a[n_] := b[n, 0, 0];
a /@ Range[0, 27] (* Jean-François Alcover, Mar 29 2021, after Alois P. Heinz *)
-
from functools import lru_cache
from sympy import isprime
def g(n): return int(n == 0 or isprime(n))
@lru_cache(maxsize=None)
def b(u, o, t):
if u + o == 0: return g(t)
return (sum(b(u-j, o+j-1, 1) for j in range(1, u+1)) if g(t) else 0) +\
sum(b(u+j-1, o-j, t+1) for j in range(1, o+1))
def a(n): return b(n, 0, 0)
print([a(n) for n in range(28)]) # Michael S. Branicky, Mar 29 2021 after Alois P. Heinz
A317132
Number of permutations of [n] whose lengths of increasing runs are factorials.
Original entry on oeis.org
1, 1, 2, 5, 17, 70, 350, 2029, 13495, 100813, 837647, 7652306, 76282541, 823684964, 9578815164, 119346454671, 1586149739684, 22397700381817, 334879465463998, 5285103821004717, 87800206978975107, 1531533620821692217, 27987305231654121046, 534688325008397289484
Offset: 0
-
g:= proc(n) local i; 1; for i from 2 do
if n=% then 1; break elif n<% then 0; break fi;
%*i od; g(n):=%
end:
b:= proc(u, o, t) option remember; `if`(u+o=0, g(t),
`if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+
add(b(u+j-1, o-j, t+1), j=1..o))
end:
a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)):
seq(a(n), n=0..27);
-
g[n_] := g[n] = Module[{i, k = 1}, For[i = 2, True, i++,
If[n == k, k = 1; Break[]]; If[n < k, k = 0; Break[]];
k = k*i]; k];
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, g[t],
If[g[t] == 1, Sum[b[u - j, o + j - 1, 1], {j, 1, u}], 0] +
Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]];
a[n_] := If[n == 0, 1, Sum[b[j - 1, n - j, 1], {j, 1, n}]];
a /@ Range[0, 27] (* Jean-François Alcover, Mar 29 2021~, after Alois P. Heinz *)
A317445
Number of permutations of [n] whose lengths of increasing runs are distinct squares.
Original entry on oeis.org
1, 1, 0, 0, 1, 8, 0, 0, 0, 1, 18, 0, 0, 1428, 47998, 0, 1, 32, 0, 0, 9688, 505056, 0, 0, 0, 4085949, 284958912, 0, 0, 290824632172, 28643427712626, 0, 0, 0, 104902510, 9998016202, 1, 72, 23207824626842, 3008268832634364, 182778, 206173972520, 24290829974718, 0
Offset: 0
-
g:= (n, s)-> `if`(n in s or not issqr(n), 0, 1):
b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s),
`if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t})
, j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o))
end:
a:= n-> b(n, 0$2, {}):
seq(a(n), n=0..50);
-
g[n_, s_] := If[MemberQ[s, n] || !IntegerQ@Sqrt[n], 0, 1];
b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s],
If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}],
{j, 1, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, 1, o}]];
a[n_] := b[n, 0, 0, {}];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 24 2021, after Alois P. Heinz *)
Showing 1-6 of 6 results.
Comments