A317141 In the ranked poset of integer partitions ordered by refinement, number of integer partitions coarser (greater) than or equal to the integer partition with Heinz number n.
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 9, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 12, 1, 2, 4, 4, 2, 5, 1, 11, 5, 2, 1, 10, 2
Offset: 1
Keywords
Examples
The a(24) = 6 partitions coarser than or equal to (2111) are (2111), (311), (221), (32), (41), (5), with Heinz numbers 24, 20, 18, 15, 14, 11.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..65536
Crossrefs
Programs
-
Maple
g:= l-> `if`(l=[], {[]}, (t-> map(sort, map(x-> [seq(subsop(i=x[i]+t, x), i=1..nops(x)), [x[], t]][], g(subsop(-1=[][], l)))))(l[-1])): a:= n-> nops(g(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]))): seq(a(n), n=1..100); # Alois P. Heinz, Jul 22 2018
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; ptncaps[ptn_]:=Union[Sort/@Apply[Plus,mps[ptn],{2}]]; Table[Length[ptncaps[primeMS[n]]],{n,100}]
Comments