A317311 Multiples of 11 and odd numbers interleaved.
0, 1, 11, 3, 22, 5, 33, 7, 44, 9, 55, 11, 66, 13, 77, 15, 88, 17, 99, 19, 110, 21, 121, 23, 132, 25, 143, 27, 154, 29, 165, 31, 176, 33, 187, 35, 198, 37, 209, 39, 220, 41, 231, 43, 242, 45, 253, 47, 264, 49, 275, 51, 286, 53, 297, 55, 308, 57, 319, 59, 330, 61, 341, 63, 352, 65, 363, 67, 374, 69
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Programs
-
Mathematica
{0}~Join~Riffle[2 Range@ # - 1, 11 Range@ #] &@ 35 (* or *) CoefficientList[Series[x (1 + 11 x + x^2)/((1 - x)^2*(1 + x)^2), {x, 0, 69}], x] (* Michael De Vlieger, Jul 26 2018 *) LinearRecurrence[{0,2,0,-1},{0,1,11,3},90] (* Harvey P. Dale, Aug 28 2022 *)
-
PARI
concat(0, Vec(x*(1 + 11*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 26 2018
Formula
a(2n) = 11*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 26 2018: (Start)
G.f.: x*(1 + 11*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 11*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 9/2^s). - Amiram Eldar, Oct 25 2023
a(n) = (13 + 9*(-1)^n)*n/4. - Aaron J Grech, Aug 20 2024
Comments