A277082 Generalized 15-gonal (or pentadecagonal) numbers: n*(13*n - 11)/2, n = 0,+1,-1,+2,-2,+3,-3, ...
0, 1, 12, 15, 37, 42, 75, 82, 126, 135, 190, 201, 267, 280, 357, 372, 460, 477, 576, 595, 705, 726, 847, 870, 1002, 1027, 1170, 1197, 1351, 1380, 1545, 1576, 1752, 1785, 1972, 2007, 2205, 2242, 2451, 2490, 2710, 2751, 2982, 3025, 3267, 3312, 3565, 3612, 3876, 3925, 4200, 4251, 4537, 4590, 4887, 4942
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), this sequence (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Programs
-
GAP
a:=[0,1,12,15,37];; for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 10 2018
-
Mathematica
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 12, 15, 37}, 56] Table[(26 n^2 + 26 n + 9 (-1)^n (2 n + 1) - 9)/16, {n, 0, 55}]
-
PARI
concat(0, Vec(x*(1+11*x+x^2)/((1-x)^3*(1+x)^2) + O(x^99))) \\ Altug Alkan, Oct 01 2016
Formula
G.f.: x*(1 + 11*x + x^2)/((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (26*n^2 + 26*n + 9*(-1)^n*(2*n+1) - 9)/16.
Sum_{n>=1} 1/a(n) = 26/121 + 2*Pi*cot(2*Pi/13)/11 = 1.3032041594895857... . - Vaclav Kotesovec, Oct 05 2016
Comments