cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A277082 Generalized 15-gonal (or pentadecagonal) numbers: n*(13*n - 11)/2, n = 0,+1,-1,+2,-2,+3,-3, ...

Original entry on oeis.org

0, 1, 12, 15, 37, 42, 75, 82, 126, 135, 190, 201, 267, 280, 357, 372, 460, 477, 576, 595, 705, 726, 847, 870, 1002, 1027, 1170, 1197, 1351, 1380, 1545, 1576, 1752, 1785, 1972, 2007, 2205, 2242, 2451, 2490, 2710, 2751, 2982, 3025, 3267, 3312, 3565, 3612, 3876, 3925, 4200, 4251, 4537, 4590, 4887, 4942
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2016

Keywords

Comments

More generally, the ordinary generating function for the generalized k-gonal numbers is x*(1 + (k - 4)*x + x^2)/((1 - x)^3*(1 + x)^2). A general formula for the generalized k-gonal numbers is given by (k*(2*n^2 + 2*((-1)^n + 1)*n + (-1)^n - 1) - 2*(2*n^2 + 2*(3*(-1)^n + 1)*n + 3*((-1)^n - 1)))/16.
For k>4, Sum_{n>=1} 1/a(k,n) = 2*(k-2)/(k-4)^2 + 2*Pi*cot(2*Pi/(k-2))/(k-4). - Vaclav Kotesovec, Oct 05 2016
Numbers k for which 104*k + 121 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317311. - Omar E. Pol, Jul 28 2018

Crossrefs

Cf. A051867 (15-gonal numbers), A316672, A317311.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), this sequence (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,12,15,37];;  for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 10 2018
  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 12, 15, 37}, 56]
    Table[(26 n^2 + 26 n + 9 (-1)^n (2 n + 1) - 9)/16, {n, 0, 55}]
  • PARI
    concat(0, Vec(x*(1+11*x+x^2)/((1-x)^3*(1+x)^2) + O(x^99))) \\ Altug Alkan, Oct 01 2016
    

Formula

G.f.: x*(1 + 11*x + x^2)/((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (26*n^2 + 26*n + 9*(-1)^n*(2*n+1) - 9)/16.
Sum_{n>=1} 1/a(n) = 26/121 + 2*Pi*cot(2*Pi/13)/11 = 1.3032041594895857... . - Vaclav Kotesovec, Oct 05 2016

A195151 Square array read by antidiagonals upwards: T(n,k) = n*((k-2)*(-1)^n+k+2)/4, n >= 0, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 3, 1, 1, 0, 0, 3, 2, 1, 0, 5, 2, 3, 3, 1, 0, 0, 5, 4, 3, 4, 1, 0, 7, 3, 5, 6, 3, 5, 1, 0, 0, 7, 6, 5, 8, 3, 6, 1, 0, 9, 4, 7, 9, 5, 10, 3, 7, 1, 0, 0, 9, 8, 7, 12, 5, 12, 3, 8, 1, 0, 11, 5, 9, 12, 7, 15, 5, 14, 3, 9, 1, 0, 0, 11, 10, 9, 16, 7
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Also square array T(n,k) read by antidiagonals in which column k lists the multiples of k and the odd numbers interleaved, n>=0, k>=0. Also square array T(n,k) read by antidiagonals in which if n is even then row n lists the multiples of (n/2), otherwise if n is odd then row n lists a constant sequence: the all n's sequence. Partial sums of the numbers of column k give the column k of A195152. Note that if k >= 1 then partial sums of the numbers of the column k give the generalized m-gonal numbers, where m = k + 4.
All columns are multiplicative. - Andrew Howroyd, Jul 23 2018

Examples

			Array begins:
.  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,...
.  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
.  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,...
.  3,   3,   3,   3,   3,   3,   3,   3,   3,   3,...
.  0,   2,   4,   6,   8,  10,  12,  14,  16,  18,...
.  5,   5,   5,   5,   5,   5,   5,   5,   5,   5,...
.  0,   3,   6,   9,  12,  15,  18,  21,  24,  27,...
.  7,   7,   7,   7,   7,   7,   7,   7,   7,   7,...
.  0,   4,   8,  12,  16,  20,  24,  28,  32,  36,...
.  9,   9,   9,   9,   9,   9,   9,   9,   9,   9,...
.  0,   5,  10,  15,  20,  25,  30,  35,  40,  45,...
...
		

Crossrefs

Columns k: A026741 (k=1), A001477 (k=2), zero together with A080512 (k=3), A022998 (k=4), A195140 (k=5), zero together with A165998 (k=6), A195159 (k=7), A195161 (k=8), A195312 k=(9), A195817 (k=10), A317311 (k=11), A317312 (k=12), A317313 (k=13), A317314 k=(14), A317315 (k=15), A317316 (k=16), A317317 (k=17), A317318 (k=18), A317319 k=(19), A317320 (k=20), A317321 (k=21), A317322 (k=22), A317323 (k=23), A317324 k=(24), A317325 (k=25), A317326 (k=26).

Programs

A317312 Multiples of 12 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 12, 3, 24, 5, 36, 7, 48, 9, 60, 11, 72, 13, 84, 15, 96, 17, 108, 19, 120, 21, 132, 23, 144, 25, 156, 27, 168, 29, 180, 31, 192, 33, 204, 35, 216, 37, 228, 39, 240, 41, 252, 43, 264, 45, 276, 47, 288, 49, 300, 51, 312, 53, 324, 55, 336, 57, 348, 59, 360, 61, 372, 63, 384, 65, 396, 67, 408, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 16-gonal numbers (A274978).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 16-gonal numbers.

Crossrefs

Cf. A008594 and A005408 interleaved.
Column 12 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14), A317311 (k=15).
Cf. A274978.

Programs

  • Mathematica
    {0}~Join~Riffle[2 Range@ # - 1, 12 Range@ #] &@ 35 (* or *)
    CoefficientList[Series[x (1 + 12 x + x^2)/((1 - x)^2*(1 + x)^2), {x, 0, 69}], x] (* or *)
    LinearRecurrence[{0, 2, 0, -1}, {0, 1, 12, 3}, 70] (* Michael De Vlieger, Jul 26 2018 *)

Formula

a(2n) = 12*n, a(2n+1) = 2*n + 1.
From Michael De Vlieger, Jul 26 2018: (Start)
G.f.: x*(1 + 12*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 3*2^(e+1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 5*2^(1-s)). - Amiram Eldar, Oct 25 2023
a(n) = (7 + 5*(-1)^n)*n/2. - Aaron J Grech, Aug 20 2024

A317313 Multiples of 13 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 13, 3, 26, 5, 39, 7, 52, 9, 65, 11, 78, 13, 91, 15, 104, 17, 117, 19, 130, 21, 143, 23, 156, 25, 169, 27, 182, 29, 195, 31, 208, 33, 221, 35, 234, 37, 247, 39, 260, 41, 273, 43, 286, 45, 299, 47, 312, 49, 325, 51, 338, 53, 351, 55, 364, 57, 377, 59, 390, 61, 403, 63, 416, 65, 429, 67, 442, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 17-gonal numbers (A303305).
More generally, the partial sums of the sequence formed by the multiples of m and the odd numbers interleaved, give the generalized k-gonal numbers, with m >= 1 and k = m + 4.
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 17-gonal numbers.

Crossrefs

Cf. A008595 and A005408 interleaved.
Column 13 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14), A317311 (k=15), A317312 (k=16).
Cf. A303305.

Programs

  • Mathematica
    Table[{13n, 2n + 1}, {n, 0, 35}] // Flatten (* or *)
    CoefficientList[Series[(x^3 + 13 x^2 + x)/(x^2 - 1)^2, {x, 0, 69}], x] (* or *)
    LinearRecurrence[{0, 2, 0, -1}, {0, 1, 13, 3}, 70] (* Robert G. Wilson v, Jul 26 2018 *)
  • PARI
    a(n) = if(n%2==0, return((n/2)*13), return(n)) \\ Felix Fröhlich, Jul 26 2018
    
  • PARI
    concat(0, Vec(x*(1 + 13*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 13*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 13*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 13*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 11/2^s). - Amiram Eldar, Oct 25 2023
a(n) = (15 + 11*(-1)^n)*n/4. - Aaron J Grech, Aug 20 2024

A317314 Multiples of 14 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 14, 3, 28, 5, 42, 7, 56, 9, 70, 11, 84, 13, 98, 15, 112, 17, 126, 19, 140, 21, 154, 23, 168, 25, 182, 27, 196, 29, 210, 31, 224, 33, 238, 35, 252, 37, 266, 39, 280, 41, 294, 43, 308, 45, 322, 47, 336, 49, 350, 51, 364, 53, 378, 55, 392, 57, 406, 59, 420, 61, 434, 63, 448, 65, 462, 67, 476, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 18-gonal numbers (A274979).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 18-gonal numbers.

Crossrefs

Cf. A008596 and A005408 interleaved.
Column 14 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14), A317311 (k=15), A317312 (k=16), A317313 (k=17).
Cf. A274979.

Programs

  • Mathematica
    Table[4 n + 3 n (-1)^n, {n, 0, 80}] (* Wesley Ivan Hurt, Nov 25 2021 *)
  • PARI
    a(n) = if(n%2==0, return(14*n/2), return(n)) \\ Felix Fröhlich, Jul 26 2018
    
  • PARI
    concat(0, Vec(x*(1 + 14*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 14*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 14*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
a(n) = 4*n + 3*n*(-1)^n. - Wesley Ivan Hurt, Nov 25 2021
Multiplicative with a(2^e) = 7*2^e, and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 3*2^(2-s)). - Amiram Eldar, Oct 25 2023

A317326 Multiples of 26 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 26, 3, 52, 5, 78, 7, 104, 9, 130, 11, 156, 13, 182, 15, 208, 17, 234, 19, 260, 21, 286, 23, 312, 25, 338, 27, 364, 29, 390, 31, 416, 33, 442, 35, 468, 37, 494, 39, 520, 41, 546, 43, 572, 45, 598, 47, 624, 49, 650, 51, 676, 53, 702, 55, 728, 57, 754, 59, 780, 61, 806, 63, 832, 65, 858, 67, 884, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

a(n) is the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 30-gonal numbers (A316729).
Partial sums give the generalized 30-gonal numbers.
More generally, the partial sums of the sequence formed by the multiples of m and the odd numbers interleaved, give the generalized k-gonal numbers, with m >= 1 and k = m + 4.
From Bruno Berselli, Jul 27 2018: (Start)
Also, this type of sequence is characterized by:
O.g.f.: x*(1 + m*x + x^2)/(1 - x^2)^2;
E.g.f.: x*(2 - m + (2 + m)*exp(2*x))*exp(-x)/4;
a(n) = -a(-n) = (2 + m - (2 - m)*(-1)^n)*n/4;
a(n) = (m/2)^((1 + (-1)^n)/2)*n;
a(n) = 2*a(n-2) - a(n-4), with signature (0,2,0,-1). (End)

Crossrefs

Cf. A252994 and A005408 interleaved.
Column 26 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14), A317311 (k=15), A317312 (k=16), A317313 (k=17), A317314 (k=18), A317315 (k=19), A317316 (k=20), A317317 (k=21), A317318 (k=22), A317319 (k=23), A317320 (k=24), A317321 (k=25), A317322 (k=26), A317323 (k=27), A317324 (k=28), A317325 (k=29), this sequence (k=30).
Cf. A316729.

Programs

  • Julia
    [13^div(1+(-1)^n,2)*n for n in 0:70] |> println # Bruno Berselli, Jul 28 2018
  • Mathematica
    Table[(7 + 6 (-1)^n) n, {n, 0, 70}] (* Bruno Berselli, Jul 27 2018 *)

Formula

a(2*n) = 26*n, a(2*n+1) = 2*n + 1.
From Bruno Berselli, Jul 27 2018: (Start)
O.g.f.: x*(1 + 26*x + x^2)/(1 - x^2)^2.
E.g.f.: x*(-6 + 7*exp(2*x))*exp(-x).
a(n) = -a(-n) = (7 + 6*(-1)^n)*n.
a(n) = 13^((1 + (-1)^n)/2)*n.
a(n) = 2*a(n-2) - a(n-4). (End)
Multiplicative with a(2^e) = 13*2^e, and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 3*2^(3-s)). - Amiram Eldar, Oct 26 2023
Showing 1-6 of 6 results.