cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A274979 Integers of the form m*(m + 7)/8.

Original entry on oeis.org

0, 1, 15, 18, 46, 51, 93, 100, 156, 165, 235, 246, 330, 343, 441, 456, 568, 585, 711, 730, 870, 891, 1045, 1068, 1236, 1261, 1443, 1470, 1666, 1695, 1905, 1936, 2160, 2193, 2431, 2466, 2718, 2755, 3021, 3060, 3340, 3381, 3675, 3718, 4026, 4071, 4393, 4440, 4776, 4825
Offset: 1

Views

Author

Bruno Berselli, Jul 15 2016

Keywords

Comments

Nonnegative values of m are listed in A047393.
Also, numbers h such that 32*h + 49 is a square.
Equivalently, numbers of the form i*(8*i + 7) with i = 0, -1, 1, -2, 2, -3, 3, ...
Infinitely many squares belong to this sequence.
The first bisection is A139278, and 0 followed by the second bisection gives A051870.
Generalized 18-gonal (or octadecagonal) numbers (see the third comment). - Omar E. Pol, Jun 06 2018
Partial sums of A317314. - Omar E. Pol, Jul 28 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(16*n-15))*(1 + x^(16*n-1))*(1 - x^(16*n)) = 1 + x + x^15 + x^18 + x^46 + .... - Peter Bala, Dec 10 2020
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, k >= 5. They are also the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, k >= 5. In this case k = 18. - Omar E. Pol, Apr 25 2021

Examples

			100 is in the sequence because 100 = 25*(25+7)/8 or also 100 = 4*(8*4-7).
From _Omar E. Pol_, Apr 24 2021: (Start)
Illustration of initial terms as vertices of a rectangular spiral:
        46_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _18
         |                                                       |
         |                           0                           |
         |                           |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
         |                           1                           15
         |
        51
More generally, all generalized k-gonal numbers can be represented with this kind of spirals, k >= 5. In this case  k = 18. (End)
		

Crossrefs

Cf. sequences of the form m*(m+k)/(k+1) listed in A274978.
Cf. similar sequences listed in A299645.
Cf. A317314.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), this sequence (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [t: m in [0..200] | IsIntegral(t) where t is m*(m+7)/8];
    
  • Mathematica
    Select[m = Range[0, 200]; m (m + 7)/8, IntegerQ] (* Jean-François Alcover, Jul 21 2016 *)
    Select[Table[(m(m+7))/8,{m,0,200}],IntegerQ] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{0,1,15,18,46},50] (* Harvey P. Dale, May 07 2019 *)
  • Python
    def A274979(n): return (n>>1)*((n<<2)+(3 if n&1 else -7)) # Chai Wah Wu, Mar 11 2025
  • Sage
    def A274979_list(len):
        h = lambda m: m*(m+7)/8
        return [h(m) for m in (0..len) if h(m) in ZZ]
    print(A274979_list(199)) # Peter Luschny, Jul 18 2016
    

Formula

O.g.f.: x^2*(1 + 14*x + x^2)/((1 + x)^2*(1 - x)^3).
E.g.f.: (3*(2*x + 1)*exp(-x) + (8*x^2 - 3)*exp(x))/4.
a(n) = (8*(n-1)*n - 3*(2*n-1)*(-1)^n - 3)/4.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n >= 6. - Wesley Ivan Hurt, Dec 18 2020
From Amiram Eldar, Feb 28 2022: (Start)
Sum_{n>=2} 1/a(n) = (8 + 7*(sqrt(2)+1)*Pi)/49.
Sum_{n>=2} (-1)^n/a(n) = 8*log(2)/7 + 2*sqrt(2)*log(sqrt(2)+1)/7 - 8/49. (End)
a(n) = (n-1)*(4*n+3)/2 if n is odd and a(n) = n*(4*n-7)/2 if n is even. - Chai Wah Wu, Mar 11 2025

A195151 Square array read by antidiagonals upwards: T(n,k) = n*((k-2)*(-1)^n+k+2)/4, n >= 0, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 3, 1, 1, 0, 0, 3, 2, 1, 0, 5, 2, 3, 3, 1, 0, 0, 5, 4, 3, 4, 1, 0, 7, 3, 5, 6, 3, 5, 1, 0, 0, 7, 6, 5, 8, 3, 6, 1, 0, 9, 4, 7, 9, 5, 10, 3, 7, 1, 0, 0, 9, 8, 7, 12, 5, 12, 3, 8, 1, 0, 11, 5, 9, 12, 7, 15, 5, 14, 3, 9, 1, 0, 0, 11, 10, 9, 16, 7
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Also square array T(n,k) read by antidiagonals in which column k lists the multiples of k and the odd numbers interleaved, n>=0, k>=0. Also square array T(n,k) read by antidiagonals in which if n is even then row n lists the multiples of (n/2), otherwise if n is odd then row n lists a constant sequence: the all n's sequence. Partial sums of the numbers of column k give the column k of A195152. Note that if k >= 1 then partial sums of the numbers of the column k give the generalized m-gonal numbers, where m = k + 4.
All columns are multiplicative. - Andrew Howroyd, Jul 23 2018

Examples

			Array begins:
.  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,...
.  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
.  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,...
.  3,   3,   3,   3,   3,   3,   3,   3,   3,   3,...
.  0,   2,   4,   6,   8,  10,  12,  14,  16,  18,...
.  5,   5,   5,   5,   5,   5,   5,   5,   5,   5,...
.  0,   3,   6,   9,  12,  15,  18,  21,  24,  27,...
.  7,   7,   7,   7,   7,   7,   7,   7,   7,   7,...
.  0,   4,   8,  12,  16,  20,  24,  28,  32,  36,...
.  9,   9,   9,   9,   9,   9,   9,   9,   9,   9,...
.  0,   5,  10,  15,  20,  25,  30,  35,  40,  45,...
...
		

Crossrefs

Columns k: A026741 (k=1), A001477 (k=2), zero together with A080512 (k=3), A022998 (k=4), A195140 (k=5), zero together with A165998 (k=6), A195159 (k=7), A195161 (k=8), A195312 k=(9), A195817 (k=10), A317311 (k=11), A317312 (k=12), A317313 (k=13), A317314 k=(14), A317315 (k=15), A317316 (k=16), A317317 (k=17), A317318 (k=18), A317319 k=(19), A317320 (k=20), A317321 (k=21), A317322 (k=22), A317323 (k=23), A317324 k=(24), A317325 (k=25), A317326 (k=26).

Programs

A317326 Multiples of 26 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 26, 3, 52, 5, 78, 7, 104, 9, 130, 11, 156, 13, 182, 15, 208, 17, 234, 19, 260, 21, 286, 23, 312, 25, 338, 27, 364, 29, 390, 31, 416, 33, 442, 35, 468, 37, 494, 39, 520, 41, 546, 43, 572, 45, 598, 47, 624, 49, 650, 51, 676, 53, 702, 55, 728, 57, 754, 59, 780, 61, 806, 63, 832, 65, 858, 67, 884, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

a(n) is the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 30-gonal numbers (A316729).
Partial sums give the generalized 30-gonal numbers.
More generally, the partial sums of the sequence formed by the multiples of m and the odd numbers interleaved, give the generalized k-gonal numbers, with m >= 1 and k = m + 4.
From Bruno Berselli, Jul 27 2018: (Start)
Also, this type of sequence is characterized by:
O.g.f.: x*(1 + m*x + x^2)/(1 - x^2)^2;
E.g.f.: x*(2 - m + (2 + m)*exp(2*x))*exp(-x)/4;
a(n) = -a(-n) = (2 + m - (2 - m)*(-1)^n)*n/4;
a(n) = (m/2)^((1 + (-1)^n)/2)*n;
a(n) = 2*a(n-2) - a(n-4), with signature (0,2,0,-1). (End)

Crossrefs

Cf. A252994 and A005408 interleaved.
Column 26 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14), A317311 (k=15), A317312 (k=16), A317313 (k=17), A317314 (k=18), A317315 (k=19), A317316 (k=20), A317317 (k=21), A317318 (k=22), A317319 (k=23), A317320 (k=24), A317321 (k=25), A317322 (k=26), A317323 (k=27), A317324 (k=28), A317325 (k=29), this sequence (k=30).
Cf. A316729.

Programs

  • Julia
    [13^div(1+(-1)^n,2)*n for n in 0:70] |> println # Bruno Berselli, Jul 28 2018
  • Mathematica
    Table[(7 + 6 (-1)^n) n, {n, 0, 70}] (* Bruno Berselli, Jul 27 2018 *)

Formula

a(2*n) = 26*n, a(2*n+1) = 2*n + 1.
From Bruno Berselli, Jul 27 2018: (Start)
O.g.f.: x*(1 + 26*x + x^2)/(1 - x^2)^2.
E.g.f.: x*(-6 + 7*exp(2*x))*exp(-x).
a(n) = -a(-n) = (7 + 6*(-1)^n)*n.
a(n) = 13^((1 + (-1)^n)/2)*n.
a(n) = 2*a(n-2) - a(n-4). (End)
Multiplicative with a(2^e) = 13*2^e, and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 3*2^(3-s)). - Amiram Eldar, Oct 26 2023
Showing 1-3 of 3 results.