cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A317855 Decimal expansion of a constant related to the asymptotics of A122400.

Original entry on oeis.org

3, 1, 6, 1, 0, 8, 8, 6, 5, 3, 8, 6, 5, 4, 2, 8, 8, 1, 3, 8, 3, 0, 1, 7, 2, 2, 0, 2, 5, 8, 8, 1, 3, 2, 4, 9, 1, 7, 2, 6, 3, 8, 2, 7, 7, 4, 1, 8, 8, 5, 5, 6, 3, 4, 1, 6, 2, 7, 2, 7, 8, 2, 0, 7, 5, 3, 7, 6, 9, 7, 0, 5, 9, 2, 1, 9, 3, 0, 4, 6, 1, 1, 2, 1, 9, 7, 5, 7, 4, 6, 8, 5, 4, 9, 7, 8, 4, 5, 9, 3, 2, 4, 2, 2, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 09 2018

Keywords

Examples

			3.161088653865428813830172202588132491726382774188556341627278...
		

Crossrefs

Programs

  • Mathematica
    r = r /. FindRoot[E^(1/r)/r + (1 + E^(1/r)) * ProductLog[-E^(-1/r)/r] == 0, {r, 3/4}, WorkingPrecision -> 120]; RealDigits[(1 + Exp[1/r])*r^2][[1]]
  • PARI
    r=solve(r=.8,1,exp(1/r)/r + (1+exp(1/r))*lambertw(-exp(-1/r)/r))
    (1+exp(1/r))*r^2 \\ Charles R Greathouse IV, Jun 15 2021

Formula

Equals (1+exp(1/r))*r^2, where r = 0.873702433239668330496568304720719298213992... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0.

A317349 G.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - (1-x)^n )^n = 1.

Original entry on oeis.org

1, 1, 2, 7, 42, 372, 4269, 59047, 946557, 17175289, 347208299, 7730688884, 187911183701, 4951155672353, 140575561645293, 4279249948000903, 139050095246322895, 4804391579357016747, 175902340755219278039, 6803436418471129704925, 277202774381386656583959, 11868116969794805874111831
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 42*x^4 + 372*x^5 + 4269*x^6 + 59047*x^7 + 946557*x^8 + 17175289*x^9 + 347208299*x^10 + ...
such that
1 = 1  +  (1/A(x) - (1-x))  +  (1/A(x) - (1-x)^2)^2  +  (1/A(x) - (1-x)^3)^3  +  (1/A(x) - (1-x)^4)^4  +  (1/A(x) - (1-x)^5)^5  +  (1/A(x) - (1-x)^6)^6  +  (1/A(x) - (1-x)^7)^7  +  (1/A(x) - (1-x)^8)^8  + ...
Also,
A(x) = 1  +  (1/A(x) - (1-x)^2)  +  (1/A(x) - (1-x)^3)^2  +  (1/A(x) - (1-x)^4)^3  +  (1/A(x) - (1-x)^5)^4  +  (1/A(x) - (1-x)^6)^5  +  (1/A(x) - (1-x)^7)^6  +  (1/A(x) - (1-x)^8)^7  +  (1/A(x) - (1-x)^9)^8  + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ( 1/Ser(A) - (1-x)^(m+1) )^m ) )[#A]/2 ); A[n+1]}
    for(n=0,25, print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ( 1/A(x) - (1-x)^n )^n.
(2) A(x) = Sum_{n>=0} ( 1/A(x) - (1-x)^(n+1) )^n.
(3) 1 = Sum_{n>=0} ( 1/A(x) - (1-x)^(n+1) )^n * (1-x)^(n+1).
(4) A(x)^2 = 2*A(x) * [ Sum_{n>=0} (n+1) * ( 1/A(x) - (1-x)^(n+1) )^n ] - [ Sum_{n>=0} (n+1) * ( 1/A(x) - (1-x)^(n+2) )^n ].
(5) A(x) = [ Sum_{n>=1} n*(n+1)/2 * (1-x)^(n+1) * ( 1/Ser(A) - (1-x)^(n+1) )^(n-1) ] / [ Sum_{n>=1} n^2 * (1-x)^n * ( 1/Ser(A) - (1-x)^n )^(n-1) ].
a(n) ~ 2^(log(2)/2 - 5/2) * n^n / (sqrt(1-log(2)) * exp(n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Aug 06 2018
Showing 1-2 of 2 results.