cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317350 G.f. satisfies: A(x) = Sum_{n>=0} ( (1+x)^n - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1).

Original entry on oeis.org

1, 1, 2, 12, 200, 4160, 99862, 2767792, 87200166, 3076185774, 120118928740, 5144915483804, 239932734849080, 12106729328331780, 657428964058944716, 38239094075667233528, 2372421500769940561658, 156417910715313378830238, 10923007991339600108590688, 805475337677577620666606928, 62550798567594006106067173708
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2018

Keywords

Comments

G.f. A(x) = G(log(1+x)), where G(x) is the e.g.f. of A317355.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 200*x^4 + 4160*x^5 + 99862*x^6 + 2767792*x^7 + 87200166*x^8 + 3076185774*x^9 + 120118928740*x^10 + ...
such that A = A(x) satisfies
A(x) = 1/(2 - A)  +  ((1+x) - A)/(2 - (1+x)*A)^2  +  ((1+x)^2 - A)^2/(2 - (1+x)^2*A)^3  +  ((1+x)^3 - A)^3/(2 - (1+x)^3*A)^4  +  ((1+x)^4 - A)^4/(2 - (1+x)^4*A)^5  +  ((1+x)^5 - A)^5/(2 - (1+x)^5*A)^6 + ...
Also,
A(x) = 1/(2 + A)  +  ((1+x) + A)/(2 + (1+x)*A)^2  +  ((1+x)^2 + A)^2/(2 + (1+x)^2*A)^3  +  ((1+x)^3 + A)^3/(2 + (1+x)^3*A)^4  +  ((1+x)^4 + A)^4/(2 + (1+x)^4*A)^5  +  ((1+x)^5 + A)^5/(2 + (1+x)^5*A)^6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A = Vec( sum(m=0,#A, ( (1+x)^m - Ser(A) )^m  / (2 - (1+x)^m*Ser(A))^(m+1) ) ) ); A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} ( (1+x)^n - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1),
(2) A(x) = Sum_{n>=0} ( (1+x)^n + A(x) )^n / (2 + (1+x)^n*A(x))^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = A317904 = 3.956184203026... and c = 0.14581304299... - Vaclav Kotesovec, Aug 07 2018