cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A317904 Decimal expansion of a constant related to the asymptotics of A302598.

Original entry on oeis.org

3, 9, 5, 6, 1, 8, 4, 2, 0, 3, 0, 2, 6, 1, 6, 9, 7, 5, 4, 5, 4, 0, 8, 0, 2, 1, 8, 1, 8, 7, 8, 3, 0, 0, 8, 3, 3, 2, 9, 9, 9, 9, 8, 8, 0, 9, 5, 2, 5, 5, 5, 4, 0, 9, 8, 1, 6, 4, 9, 6, 2, 1, 1, 3, 0, 9, 3, 2, 8, 8, 5, 1, 3, 1, 4, 6, 2, 5, 2, 1, 2, 3, 0, 3, 1, 1, 5, 8, 9, 4, 8, 8, 4, 1, 6, 4, 0, 9, 6, 0, 7, 4, 7, 6, 5
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 10 2018

Keywords

Examples

			3.9561842030261697545408021818783008332999988095...
		

Crossrefs

A317350 G.f. satisfies: A(x) = Sum_{n>=0} ( (1+x)^n - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1).

Original entry on oeis.org

1, 1, 2, 12, 200, 4160, 99862, 2767792, 87200166, 3076185774, 120118928740, 5144915483804, 239932734849080, 12106729328331780, 657428964058944716, 38239094075667233528, 2372421500769940561658, 156417910715313378830238, 10923007991339600108590688, 805475337677577620666606928, 62550798567594006106067173708
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2018

Keywords

Comments

G.f. A(x) = G(log(1+x)), where G(x) is the e.g.f. of A317355.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 200*x^4 + 4160*x^5 + 99862*x^6 + 2767792*x^7 + 87200166*x^8 + 3076185774*x^9 + 120118928740*x^10 + ...
such that A = A(x) satisfies
A(x) = 1/(2 - A)  +  ((1+x) - A)/(2 - (1+x)*A)^2  +  ((1+x)^2 - A)^2/(2 - (1+x)^2*A)^3  +  ((1+x)^3 - A)^3/(2 - (1+x)^3*A)^4  +  ((1+x)^4 - A)^4/(2 - (1+x)^4*A)^5  +  ((1+x)^5 - A)^5/(2 - (1+x)^5*A)^6 + ...
Also,
A(x) = 1/(2 + A)  +  ((1+x) + A)/(2 + (1+x)*A)^2  +  ((1+x)^2 + A)^2/(2 + (1+x)^2*A)^3  +  ((1+x)^3 + A)^3/(2 + (1+x)^3*A)^4  +  ((1+x)^4 + A)^4/(2 + (1+x)^4*A)^5  +  ((1+x)^5 + A)^5/(2 + (1+x)^5*A)^6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A = Vec( sum(m=0,#A, ( (1+x)^m - Ser(A) )^m  / (2 - (1+x)^m*Ser(A))^(m+1) ) ) ); A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} ( (1+x)^n - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1),
(2) A(x) = Sum_{n>=0} ( (1+x)^n + A(x) )^n / (2 + (1+x)^n*A(x))^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = A317904 = 3.956184203026... and c = 0.14581304299... - Vaclav Kotesovec, Aug 07 2018
Showing 1-2 of 2 results.