A317362 Expansion of e.g.f. exp(exp(x/(1 + x)) - 1).
1, 1, 0, -1, 3, -8, 23, -89, 556, -4773, 44425, -397670, 3060577, -12448655, -235761640, 9571505555, -241952653453, 5424619822460, -116900288145113, 2494797839905055, -53406941947725348, 1152770311462756071, -25109138533156554399, 550613923917090815374, -12088287036694435407999
Offset: 0
Keywords
Links
- N. J. A. Sloane, Transforms
Programs
-
Maple
a:= proc(n) option remember; add((-1)^(n-k)*n!/k!* binomial(n-1, k-1)*combinat[bell](k), k=0..n) end: seq(a(n), n=0..30); # Alois P. Heinz, Jul 26 2018
-
Mathematica
nmax = 24; CoefficientList[Series[Exp[Exp[x/(1 + x)] - 1], {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] BellB[k] n!/k!, {k, 0, n}], {n, 0, 24}]
Formula
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*Bell(k)*n!/k!, where Bell() = A000110.
Comments