A317363 Expansion of e.g.f. 1/(2 - exp(x/(1 + x))).
1, 1, 1, 1, 3, 1, 33, -83, 955, -5243, 44913, -285647, 1672179, 3544009, -352029311, 9470312053, -208005703605, 4326748972141, -88602638362863, 1819530461684473, -37722654765171965, 791428823931046321, -16784285106705759519, 358449656565896328061, -7653024671576463436197
Offset: 0
Keywords
Links
- N. J. A. Sloane, Transforms
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*binomial(n, j), j=1..n)) end: a:= proc(n) option remember; add((-1)^(n-k)* n!/k!*binomial(n-1, k-1)*b(k), k=0..n) end: seq(a(n), n=0..30); # Alois P. Heinz, Jul 26 2018
-
Mathematica
nmax = 24; CoefficientList[Series[1/(2 - Exp[x/(1 + x)]), {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] HurwitzLerchPhi[1/2, -k, 0] n!/(2 k!), {k, 0, n}], {n, 0, 24}]
Formula
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*A000670(k)*n!/k!.
Comments