cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317390 A(n,k) is the n-th positive integer that has exactly k representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes; square array A(n,k), n>=1, k>=0, read by antidiagonals.

Original entry on oeis.org

2, 1, 5, 25, 3, 7, 43, 29, 4, 11, 211, 61, 37, 6, 15, 638, 261, 91, 40, 8, 23, 664, 848, 421, 111, 41, 9, 26, 1613, 1956, 921, 426, 121, 49, 10, 27, 2991, 3321, 2058, 969, 441, 124, 51, 12, 28, 7021, 3004, 3336, 2092, 1002, 484, 171, 52, 13, 31, 11306, 7162, 3319, 3368, 2094, 1026, 535, 184, 67, 14, 33
Offset: 1

Views

Author

Alois P. Heinz, Jul 27 2018

Keywords

Examples

			A(6,2) = 49: 1 + 3 * (1 + 5 * (1 + 2)) = 1 + 2 * (1 + 23) = 49.
Square array A(n,k) begins:
   2,  1, 25,  43, 211,  638,  664, 1613, 2991, ...
   5,  3, 29,  61, 261,  848, 1956, 3321, 3004, ...
   7,  4, 37,  91, 421,  921, 2058, 3336, 3319, ...
  11,  6, 40, 111, 426,  969, 2092, 3368, 3554, ...
  15,  8, 41, 121, 441, 1002, 2094, 3741, 3928, ...
  23,  9, 49, 124, 484, 1026, 2283, 3914, 4846, ...
  26, 10, 51, 171, 535, 1106, 2381, 3979, 5552, ...
  27, 12, 52, 184, 540, 1156, 2388, 4082, 5886, ...
  28, 13, 67, 187, 591, 1191, 2432, 4126, 6293, ...
		

Crossrefs

Row n=1 gives A317385.
A(n,n) gives A317537.
Cf. A317241.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=1, 1, add(b((n-1)/p,
          s union {p}) , p=numtheory[factorset](n-1) minus s))
        end:
    A:= proc() local h, p, q; p, q:= proc() [] end, 0;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    b[n_, s_List] := b[n, s] = If[n == 1, 1, Sum[If[p == 1, 0, b[(n - 1)/p, s  ~Union~ {p}]], {p, FactorInteger[n - 1][[All, 1]] ~Complement~ s}]];
    A[n_, k_] := Module[{h, p, q = 0}, p[_] = {}; While[Length[p[k]] < n, q = q + 1; h = b[q, {}]; p[h] = Append[p[h], q]]; p[k][[n]]];
    Table[Table[A[n, d - n], {n, 1, d}], {d, 1, 11}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)

Formula

A317241(A(n,k)) = k.